为提高防空有控炮弹的弹道性能,以一对鸭舵控制的防空弹道修正弹为对象,阐述了系统工为提高防空有控炮弹的弹道性能,以一对鸭舵控制的防空弹道修正弹为对象,阐述了系统工作原理与鸭舵控制方式,在全指令控制信号及弹体稳态飞行条件下,研究了由鸭舵偏转产生的弹道法向修正速度,给出了精度较好的估算公式。由此提出一个以鸭舵气动外形参数为设计变量的弹道修正能力综合优化设计模型,并进行了数值仿真。仿真结果表明,采用该模型对鸭舵气动外形参数进行综合优化设计,能够有效提高鸭式布局防空炮弹的弹道控制能力,为该类有控炮弹的鸭舵气动外形参数设计提供了参考。
Abstract
To improve the performance of air defense trajectory correction projectile (ADTCP), the operating principle of system and the canard control mode were described briefly for the projectile equipped with a pair of canard surfaces. The trajectory normal correction velocity due to the deflection of canard surfaces under the conditions of full command control signal and steady-state flight was investigated. An estimation formula was given, and an optimum design model of trajectory correction capability was proposed by taking the canard aerodynamic shape parameters as design variables. The simulation was conducted. The result show that the control performance of ADTCP can be enhanced effectively by using the optimum design, and the approach provides a reference for the design of canard shape parameters of ADTCP.
关键词
飞行器控制、导航技术 /
有控炮弹 /
鸭舵控制 /
修正能力
{{custom_keyword}} /
Key words
control and navigation for flight vehicle /
controllable projectile /
canard control /
correction capability /
optimum design
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Pierre Wey, Claude Berner, Eckhart Sommer, et al. Theoretical des
ign for a guided supersonic projectile[C]∥ 22nd International Symposium on Ba
llistics.Vancouver, Canada: IBC, 2005: 120-128.
[2] Pierre Wey. Performance analysis of ISL's guided supersonic projectile[
C]∥ 23rd International Symposium on Ballistics. Tarragona, Spain: IBC, 2007: 6
55-663.
[3] 徐劲祥, 宋锦武, 夏群力. 弹道修正弹末段脉冲推力控制研究[J]. 弹道
学报, 2005, 17(2): 19-23.
XU Jin-xiang, SONG Jin-wu, XIA Qun-li. A study in terminal impulse thruster c
ontrol of trajectory correction projectiles [J]. Journal of Ballistics, 2005,
17(2): 19-23. (in Chinese)
[4] Mark F Costello. Potential field artillery projectile improvement using m
ovable canards, ARL-TR-1344[R].US: Aberdeen Proving Ground, US Army Resear
ch Laboratory, 1997.
[5] 常思江, 王中原, 林献武. 一种防空指令修正弹控制模式研究[J]. 海军
工程大学学报, 2008, 20(6): 92-96.
CHANG Si-jiang, WANG Zhong-yuan, LIN Xian-wu. Control mode of antiaircraft co
mmand correction projectile [J]. Journal of Naval University of Engineering, 2
008, 20(6): 92-96. (in Chinese)
[6] 王中原, 史金光. 一维弹道修正弹气动布局与修正能力研究[J]. 南京理
工大学学报:自然科学版, 2008,32(3): 333-336.
WANG Zhong-yuan, SHI Jin-guang. Aerodynamic structure and correctional ability
for one dimensional trajectory correction projectile[J]. Journal of Nanjing U
niversity of Science and Technology : Nature Science, 2008, 32(3): 333-336. (in
Chinese)
[7] 解增辉, 刘占辰, 郭佳.高速旋转弹丸外弹道修正分析及数学模型的建立[J
]. 弹箭与制导学报, 2006,26(4): 233-236.
XIE Zeng-hui, LIU Zhan-chen, GUO Jia. Exterior trajectory correction analysis
and mathematic model building for high-speed rotary projectile[J]. Journal of
Projectiles, Rockets, Missiles and Guidance, 2006,26(4): 233-236. (in Chinese
)
[8] 孟秀云. 导弹制导与控制系统原理[M]. 北京: 北京理工大学出版社, 200
4.
MENG Xiu-yun. Principle of guidance and control system for missile[M]. Beijin
g: Beijing Institute of Technology Press, 2004. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}