存在幅相误差下的稳健稀疏贝叶斯二维波达方向估计

王绪虎,金序,侯玉君,张群飞,徐振华,王辛杰,陈建军

兵工学报 ›› 2024, Vol. 45 ›› Issue (10) : 3608-3618.

PDF(3182 KB)
PDF(3182 KB)
兵工学报 ›› 2024, Vol. 45 ›› Issue (10) : 3608-3618. DOI: 10.12382/bgxb.2023.0778
论文

存在幅相误差下的稳健稀疏贝叶斯二维波达方向估计

  • 王绪虎1,2*(), 金序1, 侯玉君1, 张群飞3, 徐振华2, 王辛杰1, 陈建军1
作者信息 +

Robust Sparse Bayesian Two-dimensional DOA Estimation with Gain-phase Errors

  • WANG Xuhu1,2*, JIN Xu1,HOU Yujun1,ZHANG Qunfei3,XU Zhenhua2,WANG Xinjie1,CHEN Jianjun1
Author information +
文章历史 +

摘要

为减小传感器幅相误差的影响,提升方位估计性能,针对L型传感器阵列提出一种存在幅相误差下的稳健稀疏贝叶斯二维波达方向(Direction-Of-Arrival, DOA)估计方法。引入一个辅助角,将二维DOA估计问题转化为两个一维角度估计问题。利用L型阵列两子阵数据互协方差矩阵的对角线元素向量,构造一个含有幅相误差的稀疏表示模型,采用期望最大算法推导未知参数表达式并进行迭代运算,进而获得离网格和信号精度,利用二者构建新的空间谱函数,通过谱峰搜索估计出辅助角;将求得辅助角代入含有幅相误差的阵列接收数据稀疏表示模型,再次运用稀疏贝叶斯学习方法,估计出入射信号的俯仰角;根据3个角之间的关系,估计出方位角。研究结果表明:该方法实现了方位角和俯仰角的自动匹配,进一步克服了幅相误差对估计性能的影响,提高了方位估计的精度和角度分辨力,尤其是在高信噪比和幅相误差较大情况下优势更明显;仿真结果验证了该方法的有效性。

Abstract

To reduce the influence of gain-phase errors and improve the performance of direction-of-arrival (DOA) estimation, a robust sparse Bayesian two-dimensional DOA estimation method with gain-phase errors is proposed for the L-shaped sensor array. In the proposed method, an auxiliary angle is introduced to transform a 2D DOA estimation problem into two 1D angle estimation problems. A sparse representation model with gain-phase errors is constructed by using the diagonal element vector of the cross-covariance matrix of two submatrices of L-shaped sensor array. The expectation maximization algorithm is used to derive the unknown parameter expression,which is used to perform the iterative operations for obtaining the off-grid and the precision of signal. A new spatial spectral function is constructed by using the off-grid and the precision of signal. The auxiliary angle can be estimated by searching the new spatial spectra peak. The estimated auxiliary angle is introduced into the sparse representation model of the received data with gain-phase errors, and then the sparse Bayesian learning method is used to estimate the elevation angle of incident signal. According to the relationship among three angles, the azimuth angle can be estimated. The results show that this method realizes the automatic matching of azimuth angle and elevation angle, and improves the accuracy of DOA estimation and angle resolution. Simulated results verify the effectiveness of the proposed method.

关键词

波达方向估计 / 幅相误差 / 稀疏信号重构 / 稀疏贝叶斯学习 / L型阵列

Key words

direction-of-arrivalestimation / gain-phaseerror / sparsesignalreconstruction / sparseBayesianlearning / L-shapedsensorarray

引用本文

导出引用
王绪虎,金序,侯玉君,张群飞,徐振华,王辛杰,陈建军. 存在幅相误差下的稳健稀疏贝叶斯二维波达方向估计. 兵工学报. 2024, 45(10): 3608-3618 https://doi.org/10.12382/bgxb.2023.0778
WANG Xuhu, JIN Xu,HOU Yujun,ZHANG Qunfei,XU Zhenhua,WANG Xinjie,CHEN Jianjun. Robust Sparse Bayesian Two-dimensional DOA Estimation with Gain-phase Errors. Acta Armamentarii. 2024, 45(10): 3608-3618 https://doi.org/10.12382/bgxb.2023.0778
中图分类号: TN911.7   

参考文献

[1]ZHUC Q, FANG S L, WU Q S, et al. Robust wideband DOA estimation based on element-space data reconstruction in a multi-source environment[J]. IEEE Access, 2021, 9: 43522-43539.
[2]MORADKHANS, HOSSEINZADEH S, ZAKER R. Deep-learning based DOA estimation in the presence of multiplicative noise[J]. Wireless Personal Communications, 2022, 126(4): 3093-3101.
[3]LIUY, DONG N, ZHANG X H, et al. DOA estimation for massive MIMO systems with unknown mutual coupling based on block sparse Bayesian learning[J]. Sensors, 2022, 22(22): 9833-9843.
[4]WAGNERM, PARK Y S, GERSTOFT P. Gridless DOA estimation and Root-MUSIC for non-uniform linear arrays[J]. IEEE Transactions on Signal Processing, 2021, 69: 2144-2157.
[5]ZHANGW, HAN Y, JIN M, et al. An improved Esprit-like algorithm for coherent signals DOA estimation[J]. IEEE Communications Letters, 2020, 24(2): 339-343.
[6]JIANGZ M, ZHANG P C, RIHAN M, et al. Maximum likelihood approach to DOA estimation using lens antenna array[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 242.
[7]MELLERM, STAWIARSKI K. On DOA estimation for rotating arrays using stochastic maximum likelihood approach[J]. IEEE Transactions on Signal Processing, 2020, 68: 5219-5229.
[8]单泽彪, 常立民, 刘小松, 等.基于自然对数复合函数近似l0范数的DOA估计[J]. 兵工学报, 2023, 44(5): 1521-1528.
SHAN Z B, CHANG L M, LIU X S. DOA estimation based on approximate l0 norm of natural logarithm composite function[J]. Acta Armamentarii, 2023, 44(5): 1521-1528. (in Chinese)
[9]LIUL T, RAO Z J. An adaptive lp norm minimization algorithm for direction of arrival estimation[J]. Remote Sensing, 2022, 14(3):766-777.
[10]NEEDELLD, TROPP J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Communications of the ACM, 2010, 53(12): 93-100.
[11]KEYVANA, VAHID M S, BEHROUZ M. High-precision OMP-based direction of arrival estimation scheme for hybrid non-uniform array[J]. IEEE Communications Letters, 2020, 24(2):354-357.
[12]BABACANS D, MOLINA R, KATSAGGELOS A K. Bayesian compressive sensing using laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63.
[13]YANGZ, XIE L H, ZHANG C S. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43.
[14]DAIJ S, BAO X, XU W C, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46-50.
[15]HUANGH P, SO H C, ZOUBIR A M. Off-grid direction-of-arrival estimation using second-order Taylor approximation[J]. Signal Processing, 2022, 196: 108513-108519.
[16]LIUD H, ZHAO Y B. Real-valued sparse Bayesian learning algorithm for off-grid DOA estimation in the beamspace[J]. Digital Signal Processing, 2022, 121: 103322-103328.
[17]ZENGH W, YUE H, CAO J K, et al. Real-valued direct position determination of quasi-stationary signals for nested arrays: Khatri-Rao subspace and unitary transformation[J]. Sensors, 2022, 22(11): 4209-4224.
[18]ZHANGY H, YANG Y X, YANG L. Off-grid DOA estimation through variational Bayesian inference in colored noise environment[J]. Digital Signal Processing, 2021, 111: 102967- 102981.
[19]WANGP Y, YANG H C, YE Z F. An off-grid wideband DOA estimation method with the variational Bayes expectation-maximization framework[J]. Signal Processing, 2022, 193:108423-108430.
[20]WANGH F, WANG X P, HUANG M X, et al. A novel variational SBL approach for off-grid DOA detection under nonuniform noise[J]. Digital Signal Processing, 2022, 128: 103622-103630.
[21]YANGX, ZHI Z, QIN W W. Block sparse recovery approach for DOA estimation in nested array with unknown mutual coupling[J]. Circuits, Systems, and Signal Processing, 2023, 42(8): 5079-5090.
[22]DONGX D, ZHAO J, SUN M, et al. Non-circular signal DOA estimation with nested array via off-grid sparse Bayesian learning[J]. Sensors, 2023, 23(21): 8907-8922.
[23]LIJ F, ZHANG X F. Combined real-valued subspace based two dimensional angle estimation using L-shaped array[J]. Digital Signal Processing, 2018, 83: 157-164.
[24]GOTOK, MARUTA K, AHN C. Compressed sensing based low complexity 2D-DOA estimation by separation and pair-matching approach[J]. IEICE Communications Express, 2020, 9(6): 224-229.
[25]WANGS X, ZHAO Y, LAILA I, et al. Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 28-36.
[26]LIUZ Y, LIU Y, LONG X D, et al. Improved block sparse Bayesian learning based DOA estimation for massive MIMO systems[J]. AEUE-International Journal of Electronics and Communications, 2023, 166: 154666-154676.
[27]ZHOUH, WEN B Y. Calibration of antenna pattern and phase errors of a cross-loop/monopole antenna array in high-frequency surface wave radars[J]. IET Radar, Sonar and Navigation, 2014, 8(5): 407-414.
[28]WANGZ S, XIE W, WAN Q. DOA estimation of multipath signals in the presence of gain‐phase errors using an auxiliary source[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(7): 1114-1121.
[29]TIANY, SHI J X, YUE H, et al. Calibrating nested sensor arrays for DOA estimation utilizing continuous multiplication operator[J]. Signal Processing, 2020, 176: 107674-107684.
[30]PENGW C, GUO C J, WANG M, et al. An improved gain-phase error self-calibration method for robust DOA estimation[J]. International Journal of Microwave and Wireless Technologies, 2019 ,11(2): 105-113.
[31]WEIZ Y, WANG W, DONG F W, et al. Self-calibration algorithm with gain-phase errors array for robust DOA estimation[J]. Progress in Electromagnetics Research M, 2021, 99: 1-12.
[32]GONGQ S, REN S W, ZHONG S N, et al. DOA estimation using sparse array with gain-phase error based on a novel atomic norm[J]. Digital Signal Processing, 2022, 120: 103266-103279.
[33]ZHANGC, HUANG H P, LIAO B. Direction finding in MIMO radar with unknown mutual coupling[J]. IEEE Access, 2017, 5: 4439-4447.br>br>br>
第45卷第10期2024年10月
兵工学报ACTA ARMAMENTARII
Vol.45No.10Oct.2024
PDF(3182 KB)

13

Accesses

0

Citation

Detail

段落导航
相关文章

/