基于人体解剖结构的防护装备性能及武器杀伤效能评估

贾益宁,温垚珂,董方栋,覃彬,李子轩,郑浩

兵工学报 ›› 2024, Vol. 45 ›› Issue (8) : 2774-2783.

PDF(7273 KB)
PDF(7273 KB)
兵工学报 ›› 2024, Vol. 45 ›› Issue (8) : 2774-2783. DOI: 10.12382/bgxb.2023.0540
论文

基于人体解剖结构的防护装备性能及武器杀伤效能评估

  • 贾益宁1, 温垚珂1*(), 董方栋2, 覃彬2, 李子轩1, 郑浩1
作者信息 +

Assessment of Protective Equipment Performance and Weapon Lethality Based on Human Anatomical Structure

  • JIA Yining1, WEN Yaoke1*, DONG Fangdong2, QIN Bin2, LI Zixuan1, ZHENG Hao1
Author information +
文章历史 +

摘要

为评估防护装备性能以及杀伤元冲击有防护人体时的杀伤效能,考虑到人体结构的复杂性,构建了基于中国可视化人体数据集、含有402种解剖结构的虚拟人体体素模型,提出基于解剖学结构的装备防护性能及武器杀伤效能评估算法,在易损性软件中开发了装备防护性能评估模块和武器杀伤效能评估模块,得到了5.8×42 mm步枪弹以不同速度冲击NIJ Ⅲ级防护时的杀伤特征量变化,以及9 mm手枪弹冲击MICH型头盔时不同头-盔间隙与人员生存率之间的关系。研究结果表明:5.8×42 mm步枪弹以850 m/s冲击人体时,穿戴防护前后的致死率分别为80%和4%,弹丸杀伤能力随着靶速度的提升而提高,950 m/s时致死率超50%(未击穿);9 mm手枪弹冲击头部的情况下,无头盔时生存率约为40%,当佩戴头盔且头-盔间隙为25 mm时生存率约为84%,较大的头-盔间隙能更有效的保护头部;研究结果可为典型杀伤元(弹丸、破片)的杀伤效能评估和防护装备性能评估提供依据,并为武器弹药设计和防护装备研制提供参考。

Abstract

Considering the complexity of the human body structure, the human voxel model with 402 anatomical structures based on the Chinese Visible Human dataset was proposed to assess the performance of the protective equipment and the effectiveness of the killing element when it impacts on the protected body; An algorithm for assessing the performance of protective equipment and the lethal effectiveness of weapons based on anatomical structures was proposed. A module for assessing the performance of protective equipment and the lethality of weapons have been developed in the vulnerability software. Obtained killing characteristic quantity changes when 5.8×42 mm rifle bullet impacts NIJ Ⅲ protection at different velocity; Obtained the relationship between different head-helmet gaps and human survival rate when 9 mm pistol bullet impacts the MICH helmet. The results of the study show that the lethality of a 5.8×42 mm rifle bullet impacting on the human body at 850 m/s was 80% (protected) and 4% (unprotected). The lethality of the bullet improves with target velocity (lethality rate >50% at a speed of 950 m/s); The survival rate is 40% when a 9 mm pistol bullet impacts the head (without a helmet), and 84% when wearing a helmet with 25 mm head-helmet interval. Therefore, a wider head-helmet interval provides more effective head protection. The study can provide the basis for the assessment of the effectiveness of typical killing element (bullet and fragment) and the performance of protective equipment, as well as a reference for the weapon design and the protective equipment development.

关键词

人员易损性 / 防护性能 / 杀伤效能 / 体素模型 / 评估软件

Key words

humanvulnerability / protectiveperformance / killefficiency / voxelmodel / assessmentsoftware

引用本文

导出引用
贾益宁,温垚珂,董方栋,覃彬,李子轩,郑浩. 基于人体解剖结构的防护装备性能及武器杀伤效能评估. 兵工学报. 2024, 45(8): 2774-2783 https://doi.org/10.12382/bgxb.2023.0540
JIA Yining, WEN Yaoke, DONG Fangdong, QIN Bin, LI Zixuan, ZHENG Hao. Assessment of Protective Equipment Performance and Weapon Lethality Based on Human Anatomical Structure. Acta Armamentarii. 2024, 45(8): 2774-2783 https://doi.org/10.12382/bgxb.2023.0540
中图分类号: TJ012.4   

参考文献

[1]REINARDB E. Target vulnerability to air defense weapons. Master's thesis[J]. Target Vulnerability to Air Defense Weapons, 1984: 34-41.
[2]李向东, 杜忠华. 目标易损性[M]. 北京: 北京理工大学出版社, 2013:1-2.
LI X D, DU Z H. Target vulnerability[M]. Beijing: Beijing Institute of Technology Press, 2013: 1-2. (in Chinese)
[3]BREEZEJ, POWERS D B. Current opinion in the assessment and management of ballistic trauma to the craniomaxillofacial region[J]. Current Opinion in Otolaryngology & Head and Neck Surgery, 2020, 28(4): 251-257.
[4]KNUDSONS A, DAY K M, KELLEY P, et al. Same-admission microvascular maxillofacial ballistic trauma reconstruction using virtual surgical planning: a case series and systematic review[J]. Craniomaxillofacial Trauma & Reconstruction, 2022, 15(3): 206- 218.
[5]张克钒, 卢芳云.美军目标易损性研究发展历程分析[J].国防科技,2022,43(2):66-74.
ZHANG K F, LU F Y. Development of target vulnerability research by the U.S. military[J]. National Defense Technology, 2022, 43(2): 66-74. (in Chinese)
[6]SAUCIERR, KASH H. Computer-man model description: ARL-TR-500[R]. Aberdeen Proving Ground, MD, US:US Army Research Laboratory, 1994.
[7]NEADESD N. The operational requirement-based casualty assessment (ORCA) model[C]∥Proceedings of the 12th International Symposium on Military Operational Research. UK: Ministry of Defence, 1995: 1-6.
[8]CHARLESA S, BROWN M. A computer man anatomical model: AD-A056564[R].Adelphi, MD, US: US Army Ballistic Research Laboratory, 1978: 1-262.
[9]STARKSM W. Improved metrics for personnel vulnerability analysis: BRL-MR-3908[R].Adelphi, MD, US: US Army Ballistic Research Laboratory, 1991:1-43.
[10]SELLIERK G, KNEUBUEHL B P, HAAG L C. Wound ballistics and the scientific background[J]. American Journal of Forensic Medicine & Pathology, 1995, 16(4):355-355.
[11]ANDRASN, WOLFGANG P. Soldier vulnerability model[C]∥Proceedings of the 27th International Symposium on Ballistics. Freiburg, Germany: International Ballistics Society, 2013: 22-26.
[12]SHEWCHENKON. A Vulnerability/Lethality model for the combat soldier, A new paradigm basis and initial development [C]∥Proceedings of Personal Armour DSM Dyneema Systems Symposium. Nuremberg-Furth, Germany:International Personal Armour Committee, 2012: 17-21.
[13]STEPHENP S. Advancements in personnel incapacitation methodologies for multiple cartridge projectiles: AD-A240295[R]. Adelphi, MD, US: US Army Research Laboratory Survivability/Lethality Analysis Directorate, 2010.
[14]LITTO P. Recommendations for a new and improved ORCA modeling system blast module: AD-A428071[R].Aberdeen Proving Ground, MD, US: US Army Research Laboratory, 2004:1-7.
[15]KNRUBUEHLB P. Wound ballistics[M].Berlin, Germany: Springs, 2017:180-210.
[16]BENJAMINK, EBERIUS N, FROUNFELKER P. Survivability measures for evaluation of personnel in military systems[C]∥Proceedings of the 24th International Symposium on Ballistics.New Orleans, LA, US: International Ballistics Society, 2008: 15-24.
[17]RICHTERM W. The operational effectiveness of medium caliber airburst munitions [D]. Quantico, VA, US: United States Marine Corps Command and Staff College, Marine Corps University, 2000.
[18]LIUS S, XU C, WEN Y K, et al. Assessment of bullet effectiveness based on a human vulnerability model[J]. Journal of the Royal Army Medical Corps, 2018, 164: 172-178.
[19]张金洋, 温垚珂, 陈箐, 等. 人员易损性建模及其评估技术研究[J]. 兵器装备工程学报, 2016, 37(4):165-168.
ZHANG J Y, WEN Y K, CHEN J, et al. Study on human vulnerability modeling and assessment technology[J]. Journal of Ordnance Equipment Engineering, 2016,37(4):165-168. (in Chinese)
[20]BOURGETD, DUMAS S, BOUAMOUL A, et al. Preliminary estimate for injury criterion to immediate incapacitation by projectile penetration[C]∥Proceedings of Personal Armour Systems Symposium. Nuremberg, Germany: DTIC, 2012: 449- 456.
[21]刘苏苏. 轻武器典型杀伤元与靶标相互作用仿真及评估研究[D]. 南京: 南京理工大学, 2017.
LIU S S. Study of simulation and assessment of the interaction between typical small arms ammo and target[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
[22]刘荫秋, 王正国, 马玉媛. 创伤弹道学[M]. 北京:人民军医出版社, 1991:122-127.
LIU Y Q, WANG Z G, MA Y Y. Wound ballistics[M]. Beijing: People's Military Medical Press, 1991:122-127. (in Chinese)
[23]SELLIERK G, KNEUBUEHL B P, HAAG L C. Wound ballistics and the scientific background[J]. Forensic Science International, 1995, 71(3):237-237.
[24]王光华, 吴志林, 赖西南, 等. 轻武器杀伤效应[M]. 北京:科学出版社, 2021:307-339.
WANG G H, WU Z L, LAI X N, et al. Terminal effects of small arms[M]. Beijing: Science Press, 2021:307-339. (in Chinese)
[25]张杰, 唐宏, 苏凯. 效能评估方法研究[M] 北京:国防工业出版社,2009:23-26
ZHANG J, TANG H, SU K. Research on effectiveness evaluation method[M]. Beijing: National Defense Industry Press,2009:23-26. (in Chinese)
[26]王以彭,李结松,刘立元.层次分析法在确定评价指标权重系数中的应用[J].第一军医大学学报,1999(4):377-379.
WANG Y P, LI J S, LIU L Y. The application of analytic hierarchy process in determining the weight coefficient of evaluation index[J]. Journal of Southern Medical University,1999(4):377-379. (in Chinese)
[27]王浩圣. 轻武器杀伤效能试验研究[D]. 南京:南京理工大学, 2011.
WANG H S. Experimental study on killing efficiency of light weapons[D]. Nanjing: Nanjing University of Science & Technology, 2011. (in Chinese)
[28]SEKINEY, SAITOH D, YOSHIMURA Y. Efficacy of body armor in protection against blast injuries using a swine model in a confined space with a blast tube[J]. Annals of Biomedical Engineering, 2021, 49(10): 2944-2956.
[29]SINGHD, CRONIN D S. Efficacy of visor and helmet for blast protection assessed using a computational head model[J]. Shock Waves, 2017, 27(6): 905-918.
[30]唐刘建, 温垚珂, 薛本源,等. 手枪弹侵彻有防护仿生人体躯干靶标试验研究[J]. 振动与冲击, 2019, 38(4):250-254.
TANG L J, WEN Y K, XUE B Y, et al. Pistol bullet impact soft body armor covered bionic human torso[J]. Journal of Vibration and Shock, 2019, 38(4):250-254. (in Chinese)
[31]温垚珂, 李子轩, 闫文敏. 基于3D-DIC技术的防弹头盔性能测试与评估[J]. 北京理工大学学报自然版, 2022, 42(5): 463-470.
WEN Y K, LI Z X, YAN W M, et al. Test and evaluation of ballistic helmet performance based on 3D-DIC technology[J]. Transactions of Beijing Institute of Technology, 2022, 42(5):463-470. (in Chinese)
[32]KULAGAA R, LOFTIS K L, MURRAY E. Development and verification of body armor target geometry created using computed tomography scans: AD1037473[R].Aberdeen Proving Ground, MD, US: US Army Research Laboratory, 2017.
[33]COULDRICKC. Optimisation of body armour design parameters: vulnerability and survivability assessment[J]. Advances in Military Textiles & Personal Equipment, 2012, 7(4):196-212.
[34]HUMPHREYC, HENNEBERG M. Anthropological analysis of projectile trauma to the bony regions of the trunk[J]. Anthropological Review, 2017, 80(2): 207-218.
[35]CARRD J, LEWIS E, MAHONEY P F. UK military helmet design and test methods[J]. BMJ Military Health, 2020, 166(5):342-346.
[36]NAJARIF, JAFARI H, ALIMOHAMMADI A M, et al. The importance of victim's clothes in gunshot wounds[J]. Journal of Emergency Practice and Trauma, 2020, 6(2): 73-76.
[37]BREEZEJ, LEWIS E A, FRYER R. Optimizing the anatomical coverage provided by military body amour systems[M]∥BULL M J, CLASPER J, MAHONEY P F. Blast Injury Science and Engineering. Cham, Switzerland: Springer, 2016: 291-299.
[38]郑浩. 基于人体解剖学结构的钝击效应损伤评估研究[D]. 南京: 南京理工大学, 2020.
ZHENG H. Research on damage assessment of blunt impact effect based on human anatomical structure[D]. Nanjing: Nanjing University of Science & Technology, 2020. (in Chinese)
[39]向红, 亢春苗, 穆靓, 等. 高频超声测量正常成人球后3 mm处的视神经鞘直径及其相关因素[J]. 广西医学, 2020, 42(9): 1065-1068.
XIANG H, KANG C M, MU L, et al. Optic nerve sheath diameter 3 mm retrobulbarly measured on high-frequency ultrasound and its related factors in healthy adults[J]. Guangxi Medical Journal, 2020, 42(9):1065-1068. (in Chinese)
[40]SODERSTROMC A, OSLER T. A modification of the injury severity score that both improves accuracy and simplifies scoring-discussion[J]. The Journal of Trauma Injury Infection and Critical Care, 1997, 43(6):925-926.
[41]李子轩, 温垚珂, 董方栋, 等. 基于人体解剖结构的单兵防护后损伤评估[J]. 兵工学报, 2022, 43(9): 2190-2199.
LI Z X, WEN Y K, DONG F D, et al. Assessment of Behind-armor trauma based on human anatomical structure[J]. Acta Armamentarii, 2022, 43(9): 2190-2199. (in Chinese)
[42]PEARCEJ R. Weaponeering: conventional weapon system effectiveness-second edition[J]. Aeronautical Journal, 2013, 117(1194):864-865.br>
PDF(7273 KB)

文章所在专题

爆炸冲击与先进防护

10

Accesses

0

Citation

Detail

段落导航
相关文章

/