活性破片高速撞击产生等离子体的毁伤效应

徐瑞泽;肖建光;马俊杨;安德隆;谢志渊;王岩鑫

兵工学报 ›› 2023, Vol. 44 ›› Issue (12) : 3733-3742.

兵工学报 ›› 2023, Vol. 44 ›› Issue (12) : 3733-3742. DOI: 10.12382/bgxb.2023.0048
论文

活性破片高速撞击产生等离子体的毁伤效应

  • 徐瑞泽1, 肖建光1,2*(), 马俊杨1, 安德隆1, 谢志渊1, 王岩鑫1
作者信息 +

Damage Effect of Plasma Produced by High-velocity Impact of Reactive Fragments

  • XU Ruize1, XIAO Jianguang1,2*, MA Junyang1, AN Delong1, XIE Zhiyuan1, WANG Yanxin1
Author information +
文章历史 +

摘要

为探究活性破片高速撞击产生等离子体特性及其对目标造成的电磁毁伤效应,开展了活性破片高速撞击铝板的毁伤试验。采用不同配方活性材料破片和普通铝制破片分别撞击铝板,通过朗缪尔三探针系统获得活性和惰性破片在特定空间位置产生等离子体的电子密度和电子温度,通过逻辑芯片信号采集系统获得74HC04逻辑芯片在等离子体作用下的电磁毁伤效应。研究结果表明:由于活性破片独特的侵爆效应,释放出更多的能量,使得产生的等离子体电子密度比惰性破片更高;配方为钽\镁\四氟乙烯-六氟丙烯-偏氟乙烯共聚物(Ta/Mg/THV,70%Ta+9.26%Mg+20.74%THV)的活性破片以1.4 km/s的速度撞击厚度为2 mm的双层铝板时,产生的等离子体电子密度能达到5.89×1015 m-3,对74HC04逻辑芯片造成了逻辑关系短暂失真的瞬态软毁伤和逻辑工作能力完全失效的不可逆毁伤。

Abstract

The damage test of reactive fragments hitting aluminum plate at high speed is carried out to investigate the plasma characteristics and the electromagnetic damage effect on target caused by high-speed impact of reactive fragments. The reactive material fragments of different formulas and ordinary aluminum fragment are used to impact the aluminum plate. The electron density and temperature of plasma generated from thereactive and inert fragments at specific spatial location were obtained by usingatriple Langmuir probe system. The electromagnetic damage effect of 74HC04 logic chip under the action of plasma was obtained by usinga logic chip signal-acquisition system. The results show that the plasma electron density produced by the reactive fragments is higher than that produced by the inert fragments due to the unique penetration effect of the reactive fragments and the release of more energy. When the reactive fragment containingtantalum/magnesium/tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer(Ta/Mg/THV,70%Ta+9.26%Mg+20.74%THV) impact the double aluminum plates with 2 mm thickness at the speed of 1.4 km/s, the plasma electron density can reach 5.89×1015 m-3, andit also causes thetransient soft damage with transient distortion of logic relation and theirreversible damage with complete failure of logic working ability to the 74HC04 logic-chip.

关键词

活性破片 / 高速碰撞 / 等离子体 / 逻辑芯片 / 电磁毁伤

Key words

reactivefragment / highspeedimpact / plasma / logicchip / electromagneticdamage

引用本文

导出引用
徐瑞泽,肖建光,马俊杨,安德隆,谢志渊,王岩鑫. 活性破片高速撞击产生等离子体的毁伤效应. 兵工学报. 2023, 44(12): 3733-3742 https://doi.org/10.12382/bgxb.2023.0048
XU Ruize, XIAO Jianguang, MA Junyang, AN Delong, XIE Zhiyuan, WANG Yanxin. Damage Effect of Plasma Produced by High-velocity Impact of Reactive Fragments. Acta Armamentarii. 2023, 44(12): 3733-3742 https://doi.org/10.12382/bgxb.2023.0048

参考文献

[1]肖建光,谢志渊,王岩鑫,等. Al/PTFE活性材料弹丸冲击/爆燃行为数值模拟研究[J]. 北京理工大学学报,2022,42(3):223-232.
XIAO J G, XIE Z Y, WANG Y X, et al. Numerical simulation method of impact/deflagration behavior by reactive materials projectile[J]. Transactions of Beijing Institute of Technology, 2022,42(3): 223-232. (in Chinese)
[2]聂政元,肖建光,王岩鑫,等.THV基活性材料力学性能与点火反应特性[J].兵工学报,2022,43(12):3030-3039.
NIE Z Y, XIAO J G WANG Y X, et al. Mechanical properties and ignition reaction characteristics of THV-based reactive materials[J]. Acta Armamentarii, 2022,43(12):3030-3039. (in Chinese)
[3]李鑫,王伟力,梁争峰,等. 复合结构活性破片对双层靶标毁伤效应[J]. 兵工学报, 2021, 42(4):764-772.
LI X, WANG L W,LIANG Z F, et al. Damage effect of composite structural reactive fragments on double-ayer targets[J]. Acta Armamentarii, 2021, 42(4);764-772. (in Chinese)
[4]徐光泽,张良,张兴高,等.活性破片侵彻Q235钢靶穿燃后效实验研究[J].火工品,2021(2):19-22.
XU G Z, ZHANG L, ZHANG X G, et al. Study on aftereffect of penetrating Q235 steel by reactive fragment[J]. Initiators and Pyrotechnics, 2021(2):19-22.(in Chinese)
[5]余庆波,郭志荣,钟世威,等. 活性射流侵爆耦合毁伤效应分析[J]. 北京理工大学学报, 2021, 41(5):465-473 .
YU Q B, GUO Z R, ZHONG S W, et al. Analysis of pentration and blast combined damage effects of reactive material jet[J]. Transactions of Beijing Institute of Technology, 2021, 41(5):465-473. (in Chinese)
[6]耿宝群,郑元枫,肖艳文,等. 梯度压力分布活性材料准静态压缩特性[J]. 北京理工大学学报, 2021, 41(4):364-371 .
GENG B Q, ZHENG Y F, XIAO Y W, et al. Quasi-static compression properties of reactive materials with molding pressure gradient distributions[J].Transactions of Beijing Institute of Technology, 2021, 41(4):364-371.(in Chinese)
[7]赵宏伟,余庆波,邓斌,等. 活性破片终点毁伤威力试验研究[J]. 北京理工大学学报, 2020, 40(4):375-381.
ZHAO H W, YU Q B, DENG B, et al. Experimental study on terminal demolition lethality of reactive fragments[J]. Transactions of Beijing Institute of Technology, 2020, 40(4):375-381. (in Chinese)
[8]谢剑文,李沛豫,王海福,等. 活性破片撞击油箱毁伤行为与机理[J]. 兵工学报, 2022,42(7):1565-1577 .
XIE J W, LI P Y, WANG H F, et al. Damage behaviors and mechanisms of reactive fragments impacting fuel tanks[J]. Acta Armamentarii, 2022,42(7):1565-1577.(in Chinese)
[9]余庆波,周晟,张甲浩,等.金属基活性破片侵彻间隔铝靶作用行为[J].兵工学报, 2023, 44(8):2263-2272.
YU Q B, ZHOU S, ZHANG J H, et al. Behavior of metal-based reactive fragments penetrating spaced aluminum targets[J]. Acta Armamentarii, 2023, 44(8):2263-2272. (in Chinese)
[10]FRIICHTENICHTS. Ionization associated with hypervelocity impact:NASA-TN-D-2091[R]. Washington, DC, US:NASA,1963.
[11]RATCLIFFP R, REBER M, COLE M J, et al.Velocity thresholds for impact plasma production[J].Advances in Space Research, 1997, 20(8):1471-1476.
[12]HEWY M, GOEL A, CLOSE S, et al. Hypervelocity impact flash and plasma on electrically biased spacecraft surfaces[J]. International Journal of Impact Engineering, 2018, 121:1-11.
[13]ZHANGK, LONG R R, ZHANG Q M, et al.Flash characteristics of plasma induced by hypervelocity impact[J]. Physics of Plasmas, 2016, 23(8):083519 .
[14]SONGW D, L Y T, LI J Q, et al. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile[J].Physics of Plasmas,2016, 23(7):1861- 1869.
[15]GONGL F, ZHANG Q M, LONG R R, et al. Theoretical analysis of ionization of spherical aluminum alloy projectile impacting aluminum alloy target in hypervelocity impact[J]. International Journal of Impact Engineering,2021, 158:104022.
[16]CHENS L, SEKIGUCHI T. Instantaneous direct-display system of plasma parameters by means of triple probe[J]. Journal of Applied Physics, 1965, 36(8):2363-2375.
[17]龚良飞,张庆明,龙仁荣,等.超高速碰撞铝合金产生等离子体的磁场及辐射特性[J].中国科学(物理学 力学 天文学),2020,50(9):198-208.
GONG L F, ZHANG Q M, LONG R R, et al. Magnetic field and radiation characteristics of plasma produced by hypervelocity impact on aluminum alloy[J].Scientia Sinica Physica, Mechanica & Astronomica, 2020,50(9):198-208. (in Chinese)
[18]宁建国,栗建桥,宋卫东. 超高速碰撞产生等离子体的毁伤特性研究[J]. 力学学报,2014,46(6):853-861.
NING J G, LI J Q, SONG W D.Damage characteristics of plasma produced by hypervelocity collision[J].Chinese Journal of Theoretical and Applied Mechanics, 2014,46(6): 853-861.(in Chinese)
[19]CHENF F. Introduction to plasma physics and controlled fusion[M]. New York,NY,US: Plenum Press, 1984.
[20]MILLERA. CRC handbook of chemistry and physics[M].78th ed.Boca Raton, FL, US: CRC Press, 1998.
[21]CLOSES, KELLEY M C. FLETCHER A, et al.RF signatures of hypervelodty impacts on spacecraft[C]∥Proceedings of the 3rd AIAA atmospheric space environments conference. Reston, VA, US:AIAA, 2011:105-111.
[22]MEYERSM A. Dynamic behavior of materials[M]. NewYork, NY, US : John Wiley & Sons, 1994.
[23]刘彧千.CMOS器件与电路的电磁脉冲效应与实验研究[D].西安:西安电子科技大学,2021.
LIU Y Q. Effects and experimental research of electromagnetic pulse in cmos devices and circuits[D]. Xi'an:Xidian University, 2021.(in Chinese)
[24]张凯. 超高速碰撞LY12铝靶产生电磁辐射实验研究[D]. 北京:北京理工大学,2016.
ZHANG K. Experimental study on electromagnetic radiation of LY12-Al produced by hypervelocity impact[D]. Beijing:Beijing Institute of Technology,2016.(in Chinese)
[25]任兴荣. 半导体器件的电磁损伤效应与机理研究[D].西安:西安电子科技大学,2014.
REN X R. Research on the electromagnetic damage effects and mechanisms of semiconductor devices[D]. Xi'an:Xidian University, 2014.(in Chinese)br>br>

Accesses

Citation

Detail

段落导航
相关文章

/