梯度模式对Miura-ori超材料力学性能影响的研究

项新梅;罗林林;符祖书;何世珠

兵工学报 ›› 2024, Vol. 45 ›› Issue (2) : 618-627.

兵工学报 ›› 2024, Vol. 45 ›› Issue (2) : 618-627. DOI: 10.12382/bgxb.2022.0883
论文

梯度模式对Miura-ori超材料力学性能影响的研究

  • 项新梅*(), 罗林林, 符祖书, 何世珠
作者信息 +

Effect of Gradient Mode on Mechanical Properties of Miura-ori Metamaterials

  • XIANG Xinmei*, LUO Linlin, FU Zushu, HE Shizhu
Author information +
文章历史 +

摘要

Miura-ori超材料是一种重量轻且多孔的材料,其机械性能通常是由自身的折叠方式和几何形状决定的,它的机械响应可以通过几何设计来进行修正调整,是一种具有多功能的、可调控且设计空间多样的超材料。为研究厚度渐变(Thickness Gradient,TG)模式以及锐角渐变模式对超材料能量吸收能力的影响,结合有限元分析软件参数化分析超材料的力学特性。研究结果表明, TG梯度为负梯度的超材料能量吸收能力较好,并且负梯度时的TG梯度超材料的平均力和能量吸收比锐角梯度超材料表现更佳。

Abstract

Miura-ori metamaterials are lightweight and porous structures whose mechanical properties are often determined by their folding modes and geometries. Their mechanical responses can be modified by geometric design. Therefore, Miura-ori metamaterial is a metamaterial with multifunctional, adjustable and spatially diverse design. In order to study the effects of thickness gradient (TG) mode and acute gradient mode on the energy absorption capacity of metamaterials, the mechanical properties of metamaterials were analyzed parametrically using the finite element software. The results show that the metamaterials with negative TG have better energy absorption capability, and the average force and energy absorption of metamaterials with negative TG are better than those with the acute gradient.

关键词

Miura-ori超材料 / 梯度模式 / 厚度渐变 / 有限元分析 / 力学性能

Key words

Miura-orimetamaterial / gradientmode / thicknessgradient / finiteelementanalysis / mechanicalproperty

引用本文

导出引用
项新梅,罗林林,符祖书,何世珠. 梯度模式对Miura-ori超材料力学性能影响的研究. 兵工学报. 2024, 45(2): 618-627 https://doi.org/10.12382/bgxb.2022.0883
XIANG Xinmei, LUO Linlin, FU Zushu, HE Shizhu. Effect of Gradient Mode on Mechanical Properties of Miura-ori Metamaterials. Acta Armamentarii. 2024, 45(2): 618-627 https://doi.org/10.12382/bgxb.2022.0883

参考文献

[1]MIURAK. Zeta-core sandwich-its concept and realization[M].Tokyo, Japan: Institute of Space and Aeronautical Science,1972.
[2]刘世毅,王立武.折纸技术在空间结构中的应用和发展[J].航天返回与遥感, 2020,41(6):114-128.
LIU S Y, WANG L W. Application and development of origami technology in spatial structure[J]. Spaceflight Return and Remote Sensing,2020,41(6):114-128. (in Chinese)
[3]ELSAYEDE A, BASILY B. A continuous folding process for sheet materials [J]. International Journal of Materials and Product, 2004, 21(1/2/3): 217-238.
[4]KURIBAYASHIK, TSUCHIYA K, YOU Z, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[J]. Materials Science and Engineering, 2005(419):131-137.
[5]LIS G, VOGT D M, RUS D, et al. Fluid-driven origami-inspired artificial muscles [J]. Proceedings of the National Academy of Sciences of the United States, 2017, 114(50): 13132-13137.
[6]RANDALLC L, GULTEPE E, GRACIAS D H. Self-folding devices and materials for biomedical applications [J]. Trends Biotechnol, 2012, 30(3): 138-146.
[7]JOHNSONM, CHEN Y, HOVET S, et al. Fabricating biomedical origami: a state-of-the-art review [J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(11): 2023-2032.
[8]TOMIK, JARKKO N, JARMO K,et al. Parametric linear finite element stress and stability analysis of isotropic and orthotropic self-supporting Miura-ori structures[J]. Mechanics of Advanced Materials and Structures, 2021, 29(27): 5808-5822.
[9]XIANGX M, QIANG W, HOU B, et al. Quasi-static and dynamic mechanical properties of Miura-ori metamaterials[J]. Thin-Walled Structures, 2020, 157: 106993.
[10]SCHENKM, GUEST S D. Geometry of Miura-folded metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(9):3276-3281.
[11]WANGD F, WANG Y Q, QIAN Z H, et al. A graded Miura-ori phononic crystals lens[J]. Physics Letters A, 2021(418):127701.
[12]YUM, YANG W M, YU Y, et al. A crawling soft robot driven by pneumatic foldable actuators based on Miura-ori [J]. Actuators, 2020, 9(2):26.
[13]ZHANGQ, WANG X Y, LEE D S L, et al. Development of kinetic origami canopy using Arc Miura folding patterns[J]. Journal of Building Engineering, 2021, 43:103116.
[14]LIY K, LIU W X, DENG Y, et al. Miura-ori enabled stretchable circuit boards[J]. Flexible Electronics, 2021, 5:3.
[15]ZHANGJ, LI T, WANG C G, et al. Aerodynamic drag characteristics of Miura-ori composite structure[J]. Journal of Aerospace Engineering, 2021,34(4):0001273.
[16]GAOJ Y, YOU Z. Origami-inspired Miura-ori honeycombs with a self-locking property[J]. Thin-Walled Structures, 2022, 171:108806.
[17]DIANAB, COLLIN Y, NATHAN B. Considering thickness-accommodation, nesting, grounding and deployment in design of Miura-ori based space arrays[J]. Mechanism and Machine Theory, 2022, 174: 104904.
[18]XIANGX M, LU G, YOU Z. Energy absorption of origami inspired structures and materials[J]. Thin-Walled Structures, 2020, 157: 107130.
[19]QIANGW, ZHANG J J, KARAGIOZOVA D. Quasi-Static energy absorption of Miura-ori metamaterials[J]. JOM,2021,73:4177-4187.
[20]XIANGX M, ZOU S M, HA N S, et al. Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing [J]. Composites Part B: Engineering, 2020, 198: 108216.
[21]HAN S, PHAM T M, CHEN W S, et al. Crashworthoness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing[J]. Thin-Walled Structures, 2021, 169:108315.
[22]DUANY, DING Y, LIU Z Y, et al. Effects of cell size vs. cell-wall thickness gradients on compressive behavior of additively manufactured foams[J]. Composites Science and Technology, 2020, 199:108339.
[23]XIANGX M, FU Z S, ZHANG S L, et al. The mechanical characteristics of graded Miura-ori metamaterials[J]. Materials & Design, 2021, 211:110173.br>br>

5

Accesses

0

Citation

Detail

段落导航
相关文章

/