互耦条件下涡旋电磁波目标方位探测方法

章鸿运;栗苹;李国林;贾瑞丽

兵工学报 ›› 2023, Vol. 44 ›› Issue (10) : 3218-3226.

兵工学报 ›› 2023, Vol. 44 ›› Issue (10) : 3218-3226. DOI: 10.12382/bgxb.2022.0480
论文

互耦条件下涡旋电磁波目标方位探测方法

  • 章鸿运, 栗苹*(), 李国林, 贾瑞丽
作者信息 +

Target Bearing Estimation Using Vortex Electromagnetic Waves with Mutual Coupling

  • ZHANG Hongyun, LI Ping*, LI Guolin, JIA Ruili
Author information +
文章历史 +

摘要

采用均匀圆阵产生涡旋电磁波时,天线阵元的辐射方向图受到邻近阵元互耦的影响,发射信号幅度和相位会发生改变,进而影响目标方位探测性能。针对此问题,利用均匀圆阵互耦矩阵的循环对称性,通过傅里叶变换将互耦矩阵展开为模式域,描述阵元激励与轨道角动量模式数之间的关系,并提出一种基于轨道角动量的改进传播算子解耦合方位估计算法。与传统算法相比,该算法避免了谱峰搜索和大特征值分解;同时,利用涡旋电磁波原始导向矢量对回波信号进行处理,规避了贝塞尔函数近似带来的误差。仿真结果表明:模式域互耦矩阵有效补偿了互耦效应的影响;所提算法较传统传播算子算法相比估计精度更高,同时计算复杂度更低。

Abstract

The use of a uniform circular array to generate vortex electromagnetic waves can lead to changes in the radiation pattern of antenna elements due to mutual coupling between adjacent array elements, causing variations in amplitude and phase that affect target azimuth detection performance. To address this problem, the mutual coupling matrix is expanded into the mode domain by Fourier transform using the symmetric circulant of the uniform circular array mutual coupling matrix. This allows for describing the relationship between array element excitation and the number of orbital angular momentum modes. Based on the above analysis, an improved propagation operator decoupling azimuth estimation algorithm based on orbital angular momentum is proposed, which avoids spectral peak search and large eigenvalue decomposition. Simulation results show that the mutual coupling matrix in the mode domain effectively compensates for the influence of the mutual coupling effect. Compared with traditional algorithms, the proposed algorithm boasts lower computational complexity and avoids errors stemming from Bessel function approximations.

关键词

涡旋电磁波 / 互耦 / 均匀圆阵 / 传播算子 / 方位估计

Key words

vortexelectromagneticwave / mutualcoupling / uniformcirculararray / propagatormethod / bearingestimation

引用本文

导出引用
章鸿运,栗苹,李国林,贾瑞丽. 互耦条件下涡旋电磁波目标方位探测方法. 兵工学报. 2023, 44(10): 3218-3226 https://doi.org/10.12382/bgxb.2022.0480
ZHANG Hongyun, LI Ping, LI Guolin, JIA Ruili. Target Bearing Estimation Using Vortex Electromagnetic Waves with Mutual Coupling. Acta Armamentarii. 2023, 44(10): 3218-3226 https://doi.org/10.12382/bgxb.2022.0480

基金

基于阵列传感器的动态体目标散射中心融合检测技术

参考文献

[1]袁航, 罗迎, 李开明, 等.基于涡旋电磁波雷达的人体目标步态精细识别[J].兵工学报, 2022, 43(5):1167-1174.
YUAN H, LUO Y, LI K M, et al. Fine recognition of human gait with vortex electromagnetic wave radar[J].Acta Armamentarii, 2022, 43(5):1167-1174.(in Chinese)
[2]YANY, XIE G D, LAVERY M P, et al.High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J].Nature communications, 2014, 5:4876.
[3]ZHANGZ Q, XIAO Y, MA Z, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28-41.
[4]ZHANGW T, ZHENG S L, HUI X N, et al. Mode division multiplexing communication using microwave orbital angular momentum: an experimental study[J].IEEE Transactions on Wireless Communications,2016,16(2): 1308-1318.
[5]THIDB, THEN H, SJHOLM J, et al.Utilization of photon orbital angular momentum in the low-frequency radio domain[J].Physical Review Letters, 2007, 99(8): 087701.
[6]MOHAMMADIS M, DALDORFF L K S, BERGMAN J E S, et al.Orbital angular momentum in radio-a system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565-72.
[7]LIUK, CHENG Y Q, YANG Z C, et al.Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14:711-714.
[8]LINM T, GAO Y, LIU P G, et al. Super-resolution orbital angular momentum based radar targets detection[J]. Electronics Letters, 2016, 52(13):1168-1170.
[9]CHENR, LONG W X, WANG X D, et al. Multi-mode OAM radio waves: generation, angle of arrival estimation and reception with UCAs[J].IEEE Transactions on Wireless Communications, 2020, 19(10): 6932-6947.
[10]孙丽华, 闫晓鹏, 刘强, 等.基于PM算法的涡旋电磁波引信超分辨测向方法[J].北京航空航天大学学报, 2022, 48(7):1263-1268.
SUN L H, YAN X P, LIU Q, et al.PM based super_resolution method of azimuth detection for electromagnetic vortex wave fuze[J].Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7):1263-1268.(in Chinese)
[11]OMARA. Dependence of beamforming on the excitation of orbital angular momentum modes[J].IEEE Transactions on Antennas and Propagation, 2020, 68(10):7039-7045.
[12]SHENF, MU J N, GUO K, et al.Generating circularly polarized vortex electromagnetic waves by the conical conformal patch antenna[J].IEEE Transactions on Antennas and Propagation, 2019, 67(9):5763-5771.
[13]GAOX F, LI P, HAO X H, et al.A novel DOA estimation algorithm using directional antennas in cylindrical conformal arrays[J].Defence Technology,2021, 17(3):1042-1051.
[14]GOOSSENSR, ROGIER H. A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling[J].IEEE Transactions on Antennas and Propagation,2007,55(3):841-849.
[15]HUANGZ Y, BALANIS C A, BIRTCHER C R.Mutual coupling compensation in UCAs:simulations and experiment[J].IEEE Transactions on Antennas & Propagation, 2006, 54(11): 3082- 3086.
[16]WANGB H, HUI H T, LEONG M S. Decoupled 2D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(3): 747-755.
[17]LINM, YANG L. Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling[J].IEEE Antennas and Wireless Propagation Letters, 2006, 5:315- 318.
[18]李磊,李国林.一种新的相干信源互耦自校正算法[J].北京理工大学学报, 2016, 36(12):1303-1308.
LI L, LI G L.A novel self-calibration algorithm for coherent signal sources[J].Transactions of Beijing Institute of Technology, 2016, 36(12):1303-1308.(in Chinese)
[19]MATHEWSC P, ZOLTOWSKI, et al.Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J].IEEE Transactions on Signal Processing,1994, 42(9):2395-2407.
[20]潘曦, 佟颖, 王华阳.球谐域传播算子快速声定向算法[J].兵工学报, 2018, 39(10): 1936-1944.
PAN X, TONG Y, WANG H Y. Acoustic sources localization using propagator method in spherical harmonic domain[J].Acta Armamentarii,2018,39(10):1936-1944.(in Chinese)
[21]PFEIFFERC, DAGEFU F, TOMASIC B, et al.Virtual impedance method for mutual coupling compensation[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8):4569- 4579.
[22]SCHMIDTR.Multiple emitter location and signal parameter estimation[J].IEEE transactions on antennas and propagation, 1986, 34(3): 276-280.
[23]LIJ F, ZHANG X F, CHEN H. Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method[J]. Signal Processing, 2012, 92(12): 3032- 3038.
[24]GALUL. A generalized Bessel function[J]. Integral Transforms and Special Functions, 2003, 14(5): 395-401.
[25]POZARD M. A relation between the active input impedance and the active element pattern of a phased array[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(9): 2486- 2489.
[26]STOICAP, LARSSON E G, GERSHMAN A B. The stochastic CRB for array processing: a textbook derivation[J]. IEEE Signal Processing Letters, 2001, 8(5): 148-150.br>br>

55

Accesses

0

Citation

Detail

段落导航
相关文章

/