电磁能与炸药联合加载药型罩基础理论
Basic Theory of Loading Liner With Electromagnetic Energy and Explosives
为提高聚能射流对炸药能量的利用率,结合电磁加载药型罩以及爆磁压缩发生器原理,提出一种电磁能与炸药联合加载药型罩的原理结构。联合加载分为两个阶段:第1阶段,电容器放电,在爆磁压缩发生器中形成初始磁通;第2阶段,炸药1爆轰,压缩磁场,电流增大,同时爆轰波传播至药型罩部分引爆炸药2,电磁力与爆轰压力共同压垮药型罩。结合炸药爆轰理论、传统PER射流成型理论以及电磁加载特性,建立电磁与炸药联合加载下药型罩射流成型的理论模型。利用理论模型计算ϕ56mm聚能装药在联合加载结构下的射流成型,并通过理论计算分析联合加载时序对联合加载射流成型的影响。计算结果表明:电磁与炸药联合加载能够增加成型射流的速度以及动能,提高聚能射流对炸药的利用率,并且优化联合加载时序能够进一步提高射流速度和动能;联合加载下射流动能相对传统聚能装药提升了34.5%,对炸药的能量利用率提高了36%。
To improve the explosive’s energy utilization rate of the shaped charge jet, a principle structure in which electromagnetic energy and explosive are combined to load the liner is proposed considering the principles of the liner loaded by electromagnetic force and magnetic flux compression generator. Combined loading is divided into two stages: in the first stage, the capacitor discharge and the initial magnetic flux is formed in the magnetic flux compression generator; in the second stage, Explosive 1 detonates, which compresses the magnetic field and increases the current, and at the same time, the detonation wave propagates to the liner to detonate Explosive 2. The electromagnetic force and detonation pressure jointly crush the liner. Combined with the explosive detonation theory, traditional PER theory of jet formaton and electromagnetic loading characteristics, a theoretical model of jet formation of a liner under combined electromagnetic and explosive loading is established. Then, the jet formation of ϕ56mm shaped charge under the combined loading structure is calculated by the theoretical model, and the influence of the combined loading sequence on jet forming is analyzed by theoretical calculation. The computational results show that the combined electromagnetic and explosive loading can increase the velocity and kinetic energy of the shaped jet, improve the explosive utilization rate of the jet, and optimize the combined loading sequence, which will further improve the jet velocity and kinetic energy. The kinetic energy of the jet under combined loading is 34.5% higher than that of the traditional shaped charge, and the energy utilization rate of explosive is increased by 36%.
聚能射流 / 电磁能与炸药 / 爆磁压缩发生器 / 能量利用率 / 联合加载时序 {{custom_keyword}} /
shaped jet / electromagnetic energy and explosives / energy utilization / magnetic flux compression generator / combined loading sequence {{custom_keyword}} /
图10 不同加载方式下压垮速度对比Fig.10 Comparison of collapse velocities of different loading methods |
图11 不同加载方式下射流速度对比Fig.11 Comparison of jet velocities of different loading methods |
表1 计算算例Table 1 Numerical examples |
编号 | rc/mm | R20/mΩ | L20/μH | I0/kA | tu/μs | Imax/kA |
---|---|---|---|---|---|---|
s-1 | 50 | 2.2 | 4.1 | 66.5 | 14.3 | 1737 |
s-2 | 45 | 2.0 | 3.2 | 76.1 | 12.1 | 1585 |
s-3 | 40 | 1.8 | 2.2 | 91.5 | 9.8 | 1357 |
表2 射流动能和能量利用率Table 2 Kinetic energy and energy utilization rate of jet |
算例 | 射流动能/kJ | 炸药能量利用率/% |
---|---|---|
s-0 | 116 | 8.4 |
s-1 | 139 | 10.1 |
s-2 | 143 | 10.4 |
s-3 | 144 | 10.5 |
s-2-1 | 147 | 10.7 |
s-3-1 | 156 | 11.4 |
[1] |
黄正祥. 聚能装药理论与实践[M]. 北京: 北京理工大学出版社, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
徐文龙, 王成, 徐斌. 超聚能射流形成过程机理研究[J]. 兵工学报, 2018, 39(2):261-268.
提出一种超聚能射流形成的理论计算方法,给出了附加装置材料密度、厚度和药型罩锥角、密度、厚度与超聚能射流速度、有效质量之间的关系。基于非线性显式动力学分析软件AUTODYN,进行了超聚能射流形成过程数值模拟,其结果与理论计算结果基本一致。通过超聚能射流侵彻试验,证明试验结果与数值模拟结果吻合较好。研究表明:在一定范围内,随着药型罩锥角的增大,超聚能射流速度逐渐减小、质量逐渐增大;超聚能射流速度、有效质量及侵彻能力远大于传统聚能射流。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
张昊, 王海福, 余庆波, 等. 活性射流侵彻钢筋混凝土靶后效超压特性[J]. 兵工学报, 2019, 40(7): 1365-1372.
为研究活性射流侵彻钢筋混凝土靶后效超压效应,采用实验、理论与数值仿真相结合的方法,开展了活性药型罩聚能装药作用钢筋混凝土靶后效超压特性研究。实验结果表明,在聚能装药结构一定条件下,低密度活性射流较高密度活性射流对钢筋混凝土靶的侵彻孔径更大,穿靶后在密闭空间内爆燃产生的冲击波峰值超压更高,且超压-时间曲线呈现出多峰现象。引入虚拟爆炸点的方法,建立了活性射流靶后爆燃超压与高能炸药爆炸等效分析模型,结合AUTODYN-3D有限元分析,得出模型预测的后效超压-时间曲线与实验结果吻合较好,揭示了活性射流在靶后密闭空间内爆燃超压传播规律及多峰现象。
In order to investigate the aftereffect overpressure characteristics of reactive jet penetrating into reinforced concrete, the experimental, theoretical and numerical simulation methods are used to study the aftereffect overpressure characteristics of reactive liner shaped charge against reinforced concrete. Experimental results show that, for the same shaped charge configuration, the low density reactive jet produces a larger diameter penetration hole on the reinforced concrete and a higher peak overpressure in a closed space compared with the high density reactive jet, and the overpressure-time curves reveal multi-peaks phenomenon. An equivalent model for aftereffect deflagration overpressure of reactive jet and high explosive explosion is developed by using the virtual explosion point method.AUTODYN-3D finite element analysis shows that the predicted aftereffect overpressure-time curves are well agreement with the experimental results, and the propagation characteristics and multi-peaks phenomenon of reactive jet in the closed space are also revealed. Key
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
苏成海, 王海福, 谢剑文, 等. 活性射流作用混凝土靶侵彻与爆炸效应研究[J]. 兵工学报, 2019, 40(9): 1829-1835.
为分析活性药型罩配方、炸高对混凝土靶毁伤威力影响规律,开展了活性射流作用混凝土靶侵彻与爆炸联合毁伤效应研究。采用实验和数值模拟相结合的方法,对活性射流作用混凝土靶的典型毁伤模式进行探究,给出了配方与炸高对毁伤效应的影响特性。实验结果表明:活性射流作用下,混凝土靶呈现为显著的锥形爆坑和裂纹毁伤效应;气体产物量较高配方的活性射流对混凝土靶产生更强的毁伤效应;在1倍装药直径炸高下,炸坑直径可达10倍装药直径以上。基于有限元分析软件AUTODYN-3D平台开展了活性射流对混凝土靶侵彻与爆炸行为的数值模拟,揭示了炸高对毁伤效应的影响机理:随着炸高的增大,进入侵坑内部的活性材料随之减少,活性射流对混凝土的侵彻深度呈现先增大、后减小的趋势;当炸高为1倍装药直径时,活性射流动能侵彻与爆炸反应延迟匹配较好,侵彻与爆炸联合毁伤威力较强。数值模拟结果与实验结果吻合较好。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
郑宇, 王晓鸣, 李文彬, 等. 双层药型罩射流形成的理论建模与分析[J]. 火炸药学报, 2008, 31(3):10-14.
为研究乳化炸药基质含水量对其热分解特性和化学动力学参数的影响,制备了含水量分别为3.46%和12.27%的乳化基质。用DSCTG联用仪得到两试样在不同加热速率下的DSC、TGDTG图谱。通过对比外推起始分解温度、组成及图谱,研究了水含量对其热稳定性和热分解特性的影响。结果表明,无论含水率多少,在被加热初期,基质失重缓慢平稳;失重的主要原因是失水,这些水主要是游离于基质中的水和被加热时少量乳化微粒破乳后释放的水;低含水量基质外推起始分解温度明显低于高含水量。分解开始后,含水量高的乳化炸药基质放热速度和失
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
杨丽, 陈闯, 张健, 等. 带隔板装药的杆式射流成型试验及侵彻特性分析[J]. 兵工学报, 2016, 37(4):48-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
杜枢, 孙奇志, 刘伟. 圆盘型爆磁压缩发生器的数值模拟[J]. 强激光与粒子束, 2016, 28(8):085001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
陈冬群, 曹胜光, 刘永贵, 等. 爆磁压缩发生器试验技术[J]. 实验技术与管理, 2002, 19(3):11-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
龚兴根, 孙奇志, 刘正芬, 等. 爆磁压缩技术综述[J]. 爆轰波与冲击波, 2003(3): 130-138.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
孙奇志, 孙承纬. 轴线起爆式螺线管型爆磁压缩发生器理论模型[J]. 强激光与粒子束, 2003, 15(4):385-390.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
夏明, 黄正祥, 顾晓辉, 等. 磁爆加载薄壁金属管的冲击变形实验研究[J]. 兵工学报, 2013, 34(3):257-262.
利用构建的磁爆加载实验平台,对脉冲磁动力与电爆炸耦合效应作用下薄壁金属管的冲击变形进行了研究,获得了加载过程的强流放电波形,以及不同结构和材料薄壁金属管的冲击变形。结果表明:以脉冲电容器组为能源时,RLC 电路过程能较好地反映加载时的强流放电特性;相同结构薄壁金属管的冲击变形主要受加载方式的影响,加载过程产生的焦耳热使材料显著升温,更易于变形,但高温将导致材料气化,无法形成磁聚毁伤元;磁聚毁伤元不宜采用低熔点或低延展性材料,相比铝材,紫铜更优,而截锥管比圆管结构更易于控制形成磁聚毁伤元。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characteristics of electromagnetic loading and established a coupling model of “Electric–Magnetic–Force” and the theoretical model of jet formation under electromagnetic force. The jet formation and penetration of conical and trumpet liners have been calculated. Then, a numerical simulation of liner collapse under electromagnetic force, jet generation, and the stretching motion were performed using an ANSYS multiphysics processor. The calculated jet velocity, jet shape, and depth of penetration were consistent with the experimental results, with a relative error of less than 10%. In addition, we calculated the jet formation of different curvature trumpet liners driven by the same loading condition and obtained the influence rule of the curvature of the liner on jet formation. Results show that the theoretical model and the ANSYS multiphysics numerical method can effectively calculate the jet formation of liners driven by electromagnetic force, and in a certain range, the greater the curvature of the liner is, the greater the jet velocity is. © 2020 The Authors
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
马彬. 强磁场与聚能装药耦合特性研究[D]. 南京: 南京理工大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |