鱼雷装备测试维修Petri网模型与指标论证分析
Analysis of Petri Net Model and Index Demonstration for Torpedo Equipment Testing and Maintenance
针对鱼雷装备测试维修使用需求,采用广义随机Petri网模型对鱼雷装备进行测试维修建模,并对测试性指标进行分析。分别建立鱼雷装备系统层和结构层GSPN模型,依据故障模式影响和危害性分析(FMECA)对鱼雷装备故障模式进行分类;对鱼雷结构层GSPN模型非基本变迁进行拓展,构建鱼雷装备基层级维修子网GSPN模型;采用同构法求解维修子网GSPN模型,利用的稳态可用度解析公式分析测试性参数与使用可用度(A0)之间的影响关系;以某型号鱼雷为例,开展测试性指标求解和模型仿真验证。研究结果表明,模型仿真可用度A’=0.999 8,与系统要求值误差小于1%,验证了所构建模型的可行性和有效性。
To meet the needs of testing and maintenance of torpedo equipment, the generalized stochastic Petri net model is used to the testing and maintenance modelling of the torpedo equipment, and the testability indices are analyzed. Firstly, the GSPN models of the system layer and the structure layer of the torpedo equipment are established respectively, and the failure modes of the torpedo equipment are classified according to the failure mode, effects and criticality analysis (FMECA). Then the non-basic transition of the GSPN model of the torpedo structure layer is expanded. Second, the isomorphism method is adopted to solve the maintenance sub-network GSPN model, and the steady-state availability analytical formula is employed to analyze the influence relationship between the testability parameters and the use availability (A0). Finally, taking a certain type of torpedo as an example, the testability index solution and model simulation verification are carried out. The model simulation availability is A’=0.999 8, and the error with the system requirement value is less than 1%, which verifies the feasibility and effectiveness of the constructed model.
鱼雷 / 测试性 / 可用度 / Petri网模型 {{custom_keyword}} /
torpedo / testability / availability / Petri net model {{custom_keyword}} /
表1 控制系统故障模式级别表Table 1 Table of control system failure mode levels |
序号 | LRU名称 | 严酷度 级别 | 符号 |
---|---|---|---|
1 | 电子组件 | I | RD |
2 | 舵机组件 | II | OG |
3 | 深度传感器 | II | OG |
4 | 测速器 | III | YW |
表2 |
库所 | 含义 | 变迁 | 含义 | 符号 | 量纲 |
---|---|---|---|---|---|
P1 | 系统正常工作 | T1 | 故障率 | ||
P2 | 系统故障状态 | T2 | 故障检测速率 | ||
P3 | 故障检测结束 | T3 | BIT故障检测率 | 1 | |
P4 | 故障无法检测 | T4 | BIT故障不可检测率 | 1 | |
P5 | 系统检测到故障 | T5 | 人工检测速率 | ||
P6 | 故障隔离结束 | T6 | 故障隔离速率 | ||
P7 | 故障可隔离至LRU | T7 | 故障隔离率 | 1 | |
P8 | 故障不可隔离至LRU | T8 | 故障不可隔离率 | 1 | |
T9 | 更换故障LRU(精确维修)速率 | ||||
T10 | 更换故障组部件(模糊维修)速率 | ||||
T11 | 虚警发生频率 |
表3 系统可达标识表Table 3 Reachability identification table of the system |
M | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|
M0 | 1 | |||||||
M1 | 1 | |||||||
M2 | 1 | |||||||
M3 | 1 | |||||||
M4 | 1 | |||||||
M5 | 1 | |||||||
M6 | 1 | |||||||
M7 | 1 |
[1] |
李天梅. 装备测试性验证试验优化设计与综合评估方法研究[D]. 长沙: 国防科技大学, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
李哲, 沈强, 张瑾, 等. 电子装备层次化模型研究进展及发展趋势[J]. 北京石油化工学院学报, 2020, 28(3):31-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
刘静, 辛军, 胡向顺, 等. 基于多信号流图模型的装备测试性分析[J]. 信息技术, 2013, 37(1):177-179.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
林闯. 随机Petri网和系统性能评价[M]. 北京: 清华大学出版社, 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
苏永定. 装备系统测试性需求分析技术研究[D]. 长沙: 国防科学技术大学, 2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
吴哲辉. Petri 网导论[M]. 北京: 机械工业出版社, 2006:1-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
蒋宏斌. 航空布撒武器测试性设计建模与分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
王瑶. 基于Petri网的四性一体化建模及仿真方法研究[D]. 西安: 西北工业大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
翟禹尧, 史贤俊, 韩露, 等. 基于层次广义随机Petri网的测试性建模新方法[J]. 兵工学报, 2020, 41(1):161-170.
针对目前装备系统采用层次化、模块化设计,维修级别与测试性建模复杂度大大提高的问题,提出一种基于层次广义随机Petri网(HGSPN)的测试性建模方法。将主流模型和广义随机Petri网(GSPN)模型进行对比,阐明主流模型存在的问题,以及选择GSPN模型的原因;对装备进行层次划分,建立分层GSPN模型;系统及其组成元件存在多个故障模式,为区分这些故障模式提出一套完整编码方案;给出可达性算法获取层次相关性矩阵,运用测试性评估数学模型得到各层级的测试性水平,将各层级的测试性信息汇总,得到装备完整的测试性水平。以某型导弹发动机系统为例,建立其HGSPN模型,并对测试性指标进行确定,得到100%的故障检测率和66.7%的故障隔离率,验证了所提建模方法和相应算法的有效性。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
邱静, 刘冠军, 杨鹏, 等. 装备测试性建模与设计技术[M]. 北京: 科学出版社, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
张钊旭. 鱼雷测试性建模方法及应用研究[D]. 西安: 中国舰船研究院, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |