不同组织Ti6321钛合金在低温高应变速率下的变形和断裂行为

李严星;王琳;闫志维;安瑞;周哲;宁子轩;程焕武;程兴旺

兵工学报 ›› 2022, Vol. 43 ›› Issue (12) : 3221-3227.

兵工学报 ›› 2022, Vol. 43 ›› Issue (12) : 3221-3227. DOI: 10.12382/bgxb.2021.0720
论文

不同组织Ti6321钛合金在低温高应变速率下的变形和断裂行为

  • 李严星1, 王琳1,2,3, 闫志维1, 安瑞1, 周哲1, 宁子轩1, 程焕武1,2, 程兴旺1,2
作者信息 +

Deformation and Fracture Behaviors of Ti6321 Titanium Alloy with Different Microstructures at Low Temperature and HighStrain Rate Conditions

  • LI Yanxing1, WANG Lin1,2,3, YAN Zhiwei1, AN Rui1, ZHOU Zhe1, NING Zixuan1, CHENG Huanwu1,2, CHENG Xingwang1,2
Author information +
文章历史 +

摘要

针对目前关于船用钛合金在低温和高应变率速率下的研究不足的问题,通过热处理获得3种组织的Ti6321钛合金,研究不同组织在温度-80~25 ℃、应变速率2 500 s-1及3 500 s-1左右的变形和断裂行为。采用低温分离式霍普金森压杆实验装置进行加载,通过光学显微镜和扫描电子显微镜等表征方法,对其微观组织演化进行观察分析。研究结果表明:随着温度的降低,Ti6321钛合金强度增加,塑性减小;在室温下,双态组织具有较好的强塑性匹配;随着温度的降低,等轴组织具有较高的强度和较好的低温塑性变形能力,表现出良好的低温动态压缩性能。断裂机制研究表明等轴组织和双态组织表现出典型的韧性断裂特征;魏氏组织断口出现高低不平的解理面,表现出明显的脆性断裂倾向。

Abstract

To close the research gap on marine titanium alloys at low temperatures and high strain rate rates, Ti6321 titanium alloys with three structures are prepared through heat treatment. The deformation and fracture behaviors of the three alloy samples within the temperature range of -80-25 ℃ and strain rate range of 2 500-3 500 s-1 are studied. A low-temperature split Hopkinson pressure bar is used for loading. The evolution of the microstructure is observed and analyzed by an optical microscope and scanning electron microscope. The results show that the strength of Ti6321 titanium alloy increases and the plasticity decreases as the temperature declines. The bimodal structure has good strength and plasticity matching at room temperature. With the decrease of temperature, the equiaxed structure has higher strength and better low-temperature plastic deformation capability, and shows good low-temperature dynamic compression properties. The study of the alloy's fracture mechanism shows that the equiaxed and bimodal structures exhibit typical ductile fracture characteristics. The fracture of Widmanstatten structure is an uneven cleavage surface, which has an evident tendency to brittle fracture.

关键词

Ti6321钛合金 / 低温 / 高应变速率 / 微观组织 / 断裂行为

Key words

Ti6321titaniumalloy / lowtemperature / highstrainrate / microstructure / fracturebehavior

引用本文

导出引用
李严星, 王琳, 闫志维, 安瑞, 周哲, 宁子轩, 程焕武, 程兴旺. 不同组织Ti6321钛合金在低温高应变速率下的变形和断裂行为. 兵工学报. 2022, 43(12): 3221-3227 https://doi.org/10.12382/bgxb.2021.0720
LI Yanxing, WANG Lin, YAN Zhiwei, AN Rui, ZHOU Zhe, NING Zixuan, CHENG Huanwu, CHENG Xingwang. Deformation and Fracture Behaviors of Ti6321 Titanium Alloy with Different Microstructures at Low Temperature and HighStrain Rate Conditions. Acta Armamentarii. 2022, 43(12): 3221-3227 https://doi.org/10.12382/bgxb.2021.0720

基金

爆炸科学与技术国家重点实验室基金项目(YBKT-17-06)

参考文献


[1]RANC, CHEN P W, LI L, et al. High-strain-rate plastic deformation and fracture behaviour of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy at room temperature[J].Mechanics of Materials, 2018, 116: 3-10.
[2]周哲, 王琳, 程兴旺, 等. Ti6321钛合金再加载力学行为研究[J].稀有金属材料与工程, 2021, 50(2):562-567.
ZHOU Z, WANG L, CHENG X W, et al.Study on reloading mechanical behavior of Ti6321 titanium alloy [J]. Rare Metal Materials and Engineering, 2021, 50(2):562-567. (in Chinese)
[3]杨胜利, 孙二举, 刘向前, 等.热处理工艺对不同组织类型的Ti6321合金板坯组织与性能的影响[J].稀有金属材料与工程, 2020, 49(3):1002-1008.
YANG S L, SUN E J, LIU X Q, et al. Effect of heat treatment on microstructure and properties of Ti6321 alloy slab with different microstructures[J].Rare Metal Materials and Engineering, 2020, 49(3):1002-1008. (in Chinese)
[4]ATROSHENKOS A, GRIGOR'EV A Y, SAVENKOV G G.Deformation and fracture of a titanium alloy during penetration of high-speed impactor to the target[J].Procedia Structural Integrity, 2020, 28:101-105.
[5]罗锦华, 朱燕丽, 孙小平, 等.热加工及热处理工艺对Ti80合金棒材组织和性能的影响[J].钛工业进展, 2016, 33(2): 20- 24.
LUO J H, ZHU Y L, SUN X P, et al.Effects of hot working process and heat treatment on microstructures and mechanical properties of Ti80 alloy bars[J].Titanium Industry Progress, 2016, 33(2): 20-24. (in Chinese)
[6]ZHANGJ, WANG Y.Effect of strain rate on the tension behavior of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy at low temperatures[J].Materials Science and Engineering A, 2014, 605:59-64.
[7]ZHANGB, WANG Y. Tensile behavior of Ti-5Al-2.5Sn alloy at low temperatures and high strain rates[J].Key Engineering Materials, 2019, 794: 135-141.
[8]高灵清, 朱金华, 李慧, 等.高应变速率及低温对工业纯钛力学性能的影响[J].稀有金属材料与工程, 2008(6):1051-1055.
GAO L Q, ZHU J H, LI H, et al.Effects of high strain rate and low temperature on mechanical properties of industrial pure titanium[J].Rare Metal Materials and Engineering, 2008(6): 1051-1055.(in Chinese)
[9]LIZ Z, ZHAO S T, WANG B F, et al. The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium[J].Acta Materialia, 2019, 181:408-422.
[10]MEYERSM A, SUBHASH G, KAD B K, et al. Evolution of microstructure and shear-band formation in α-hcp titanium[J].Mechanics of Materials, 1994, 17(2/3): 175-193.
[11]宁子轩, 王琳, 程兴旺, 等.分离式霍普金森压杆加载下不同组织Ti-6321钛合金的动态响应行为[J].兵工学报, 2021, 42(4):862-870.
NING Z X, WANG L, CHENG X W, et al.Dynamic response behaviors of Ti-6321 titanium alloys with different microstructures under split hopkinson pressure bar loading[J].Acta Armamentarii, 2021, 42(4): 862-870. (in Chinese)
[12]ZHOUD D, ZENG W D, XU J W, et al. volution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure [J]. Materials Characterization, 2019, 151:103-111.
[13]WANGQ, REN J Q, WU Y K, et al. Comparative study of crack growth behaviors of fully-lamellar and bi-lamellar Ti-6Al-3Nb-2Zr-1Mo alloy[J].Journal of Alloys and Compounds, 2019, 789: 249-255.
[14]XIONGJ H, LI S K, GAO F Y, et al. Microstructure and mechanical properties of Ti6321 alloy welded joint by GTAW[J].Materials Science and Engineering:A, 2015, 640:419-423.
[15]鲁龙龙, 张彦敏, 权思佳, 等.双态组织Ti80合金的动态再结晶行为[J].稀有金属材料与工程, 2021, 50(8):2979-2985.
LU L L, ZHANG Y M, QUAN S J, et al. Dynamic recrystallization behavior of bimodal structure Ti80 alloy [J]. Rare Metal Materials and Engineering, 2021, 50(8): 2979-2985. (in Chinese)
[16]吕逸帆, 符浩, 张云浩, 等.锻造及热处理工艺对Ti80钛合金棒材组织和性能的影响[J].热加工工艺, 2021, 50(9): 81-83, 89.
L Y F, FU H, ZHANG Y H, et al. Effect of forging and heat treatment process on Microstructure and properties of Ti80 titanium alloy bar[J].Hot Working Process, 2021, 50(9): 81- 83, 89.(in Chinese)
[17]LIL B, BAO H N, WAN Z Q, et al. Influence of residual stress due to the equatorial weld on the ultimate strength of a Ti80 spherical pressure shell[J].The International Journal of Advanced Manufacturing Technology, 2021, 116: 1831-1841.
[18]CHENJ H, YAN C, SUN J.Further study on the mechanism of cleavage fracture at low temperatures[J].Acta Metallurgica et Materialia, 1994, 42(1): 251-261.
[19]陆子川, 纪玮, 微石, 等.Ti-5Al-2.5Sn ELI钛合金低温变形机理研究[J].宇航材料工艺, 2020, 50(6):41-47.
LU Z C, JI W, WEI S, et al.Study on low temperature deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy[J].Aerospace Material Technology, 2020, 50(6):41-47. (in Chinese)
[20]LUZ C, GUO C H, LI P, et al. Effect of electropulsing treatment on microstructure and mechanical properties of intermetallic Al3Ti alloy[J].Journal of Alloys and Compounds, 2017, 708:834-843.



30

Accesses

0

Citation

Detail

段落导航
相关文章

/