碳纤维电极表面氨基改性可以显著提高其电化学性能和电场响应性能。通过高温氧化和电化学接枝相结合的方法,在碳纤维表面接枝不同分子量(0.6K、1.8K、10K)聚乙烯亚胺分子来调控电极/海水界面双电层结构。实验发现,长分子链之间因氢键更强的相互作用更容易穿插交叠,形成稳定双电层结构。结果表明:PEI-10K的性能最佳,其比电容达到12.8 F·g-1,电荷转移电阻和低频容抗显著降低;配对电极的电位漂移量仅为0.05 mV/d,电极自噪声降为2.61 nV/sqrt(Hz),并且可以响应1 mHz、0.03 mV/m的低频弱电场信号;改性后碳纤维电极的响应灵敏度、准确度得到了显著提高,可用于制备高性能海洋电场传感器,提高水下电场探测能力。
Abstract
The electrochemical and electric field response properties of carbon fiber electrodes can be significantly enhanced through surface amine modification. In this paper, polyethyleneimine (PEI) of different molecular weights (0.6K,1.8K,10K) is grafted on the surface of carbon fibers by a combination of high-temperature oxidation with electrochemical grafting to modulate the bilayer structure at the electrode/seawater interface. It is found that longer molecular chains are more easily interspersed and overlapped for they have stronger hydrogen bonding interactions, resulting in a more stable electric bilayer structure. Therefore, PEI-10K shows the best performance with a specific capacitance of 12.8 F·g-1 and charge transfer resistance and low-frequency capacitive reactance significantly reduced. The potential drift of the paired electrode is only 0.05 mV/d. The self-noise of the electrode is reduced to 2.61 nV/sqrt (Hz) and can respond to the low-frequency weak electric field signal of 1 mHz and 0.03 mV/m. The response sensitivity and accuracy of the modified carbon fiber electrode have been significantly improved. This approach can be used to prepare high-performance marine electric field sensor and improve the detection ability of underwater electric field.
关键词
碳纤维电极 /
聚乙烯亚胺 /
电化学接枝 /
电化学性能 /
电场响应特性
{{custom_keyword}} /
Key words
carbonfiberelectrode /
polyethyleneimine /
electrochemicalgrafting /
electrochemicalperformance /
electricfieldresponsecharacteristics
{{custom_keyword}} /
基金
国家自然科学基金项目(22075262);国防科技创新特区项目(18-H863-05-ZT-001-018-09)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]KIMJ H,JEON J C,YOO J G. The measurement for the underwater electric field using a underwater 3-axis electric potential sensor[C]∥Proceedings of International Conference on Grid and Distributed Computing. Berlin,Germany:Springer,2011: 408-414.
[2]CHAVEA D,LUTHER D S. Low-frequency,motionally induced electromagnetic fields in the ocean:1. theory[J].Journal of Geophysical Research Oceans,1990,95(C5): 7185-7200.
[3]DEARTHL C. Investigation of electrode materials for low frequency electric antennas in sea water[R]. Naval Postgraduate School Monterey,CA,1978.
[4]LEGIEN W.UDT Europe 2003: well staged “family affair”[J]. Naval Forces, 2003, 24(4): 132-136.
[5]申振,宋玉苏,张磊.热处理对碳纤维电极性能的影响[J].功能材料,2017,48(3):3214-3217.
SHEN Z,SONG Y S,ZHANG L. The impact of heat treatment on the performance of carbon fiber electrode[J].Journal of Functional Materials,2017,48(3): 3214-03217. (in Chinese)
[6]申振,宋玉苏,王月明.高性能碳纤维水下电场电极制备及其性能测量[J].兵工学报,2017,38(11):2190-2197.
SHEN Z,SONG Y S,WANG Y M. Preparation and performance measurement of high performance underwater carbon fiber electric field electrode[J].Acta Armamentarii,2017,38(11):2190-2197.(in Chinese)
[7]刘昂,宰学荣,宰敬喆,等.尿素改性碳纤维电场电极制备及电化学性能研究[J].材料开发与应用,2017,32(4):19-28.
LIU A,ZAI X R,ZAI J Z,et al. Preparation of electric field electrodes based on carbon fibers modified with urea and its electrochemical performances[J].Development and Application of Materials,2017,32(4):19-28.(in Chinese)
[8]段智为,宰学荣,杨志伟,等.多氨基硅烷偶联剂改性碳纤维电场电极的制备及其电化学性能研究[J].材料开发与应用,2018,33(1):25-35.
DUAN Z W,ZAI X R,YANG Z W,et al. Preparation and electrochemical performance of carbon fiber electric field electrode modified by silane coupling agent with amino group[J].Development and Application of Materials,2018,33(1):25-35.(in Chinese)
[9]FU Y P,LI H X,CAO W Y. Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting[J].Composites Part A:Applied Science and Manufacturing,2020,130:105719.
[10]LIUA,FU Y B,ZAI J Z,et al. Electrochemical and electric field response properties of highly sensitive electrodes based on carbon fiber with oxygen and nitrogen surface groups[J].IEEE Sensors Journal,2019,19(11):3966-3974.
[11]孙久哲,赵鸿浩,韩永康,等.水合肼掺氮改性碳纤维电极电化学及电场响应性能[J].兵工学报, 2022, 43(2): 363-371.
SUN J Z, ZHAO H H, HAN Y K, et al. Electrochemical and electric field response properties of hydrazine hydrate nitrogen doped carbon fiber electrode [J]. Acta Armamentarii, 2022,43(2):363-371.(in Chinese)
[12]JIANG F W, ZHAO W J, WU Y M, et al. A polyethyleneimine-grafted graphene oxide hybrid nanomaterial: Synthesis and anti-corrosion applications[J]. Applied Surface Science, 2019, 479: 963-973.
[13]TAO Y,CHEN L,JIANG E C. Layer-by-layer assembly strategy for fabrication of polydopamine-polyethyleneimine hybrid modified fibers and their application to solid-phase microextraction of bioactive molecules from medicinal plant samples followed by surface plasmon resonance biosensor validation[J]. Analytica Chimica Acta, 2021, 1146: 155-165.
[14]LIUY, FANG Y C, LIU X L, et al. Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion[J].Composites Science and Technology,2017,151:164-173.
[15]MA L C, MENG L H, WU G S, et al. Effects of bonding types of carbon fibers with branched polyethyleneimine on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites[J]. Composites Science and Technology, 2015, 117: 289-297.
[16]付玉彬,许嘉威,侯晓帆,等. 一种改性碳材料及其制备方法和应用、海洋电场传感器电极及其应用: CN114481249A[P]. 2022-05-13.
SUN Y B, XU J W, HOU X F, et al. Modified carbon material, preparation method and application thereof, ocean electric field sensor electrode and application thereof: CN114481249A [P]. 2022-05-13.(in Chinese)
[17]XUZ W, WU X Q, SUN Y, et al. Surface modification of carbon fiber by redox-induced graft polymerization of acrylic acid[J].Journal of Applied Polymer Science,2010,108(3):1887-1892.
[18]WENZ P, XU C, QIAN X, et al. A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent[J].Applied Surface Science,2019,486:546-554.
[19]ANDIDEH M,ESFANDEH M. Effect of surface modification of electrochemically oxidized carbon fibers by grafting hydroxyl and amine functionalized hyperbranched polyurethanes on interlaminar shear strength of epoxy composites[J].Carbon,2017,123: 233-242.
[20]LIX Z,FANG Y Y,ZHAO S L,et al. Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction[J].Journal of Materials Chemistry A,2016,4(34):13133-13141.
[21]FANG Y,LUO B,JIA Y Y,et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors[J]. Advanced Materials, 2012, 24(47): 6348-6355.
[22]LI Z X,CHEN J. Impedance characteristics and complex-space modeling of supercapacitors[J]. Electronic Components and Materials, 2007, 26(2): 7-10.
[23]SUNX Z,HUANG B,ZHANG X,et al. Experimental investigation of electrochemical impedance spectroscopy of electrical double layer capacitor[J].Acta Physico-Chimica Sinica,2014,30(11):2071-2076.
[24]KTZR,CARLEN M. Principles and applications of electrochemical capacitors[J].Electrochimica Acta,2000,45(15/16): 2483-2498.
[25]PALMDALE D A L,COUTO A B,OISHI S S,et al. Chemical and electrochemical treatment effects on the morphology,structure,and electrochemical performance of carbon fiber with different graphitization indexes[J].Journal of Solid State Electrochemistry,2018,22(11): 3493-3505.
[26]ARULEPPM,PERMANN L,LEIS J,et al. Influence of the solvent properties on the characteristics of a double layer capacitor[J].Journal of Power Sources,2004,133(2):320-328.
[27]HUA W K,ZHANG T H,DING S P,et al. A novel cost-effective PAN/CNS nanofibrous membranes with rich carboxyl groups for high efficient adsorption of Lanthanum (III) ions[J].Separation and Purification Technology,2021,259: 118216.
[28]SHEN Z,SONG Y S,WANG Y X,et al. Study on the detection characteristics of Ag/AgCl and carbon fiber marine electric field electrodes[J].Chinese Journal of Scientific Instrument,2018,39(2): 211-217.
[29]YAOF B, ZHONG Y, YANG Q, et al. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode[J]. Journal of Hazardous Materials, 2017, 323: 602-610.
[30]KIMY N,LEE Y C,CHOI M. Complete degradation of perchlorate using Pd/N-doped activated carbon with adsorption/catalysis bifunctional roles[J].Carbon, 2013, 65: 315-323.
[31]CHENW F, CANNON F S, RAMGEL-MENDEZ J R. Ammonia-tailoring of GAC to enhance perchlorate removal. I: Characterization of NH3 thermally tailored GACs[J]. Carbon,2005,43(3):573-580.
[32]DDIACˇU2OV,DOACˇU2KAL J,MOUACˇU2KA F,et al. Molecular dynamics simulation study of the effect of a strong electric field on the structure of a poly (oxyethylene) chain in explicit solvents[J].Journal of Molecular Liquids,2021,338: 116622.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}