高氮奥氏体不锈钢与603马氏体高强钢焊接接头组织及性能

杨东青;张建;范霁康;周赵;王克鸿

兵工学报 ›› 2022, Vol. 43 ›› Issue (8) : 1990-1997.

兵工学报 ›› 2022, Vol. 43 ›› Issue (8) : 1990-1997. DOI: 10.12382/bgxb.2021.0490
论文

高氮奥氏体不锈钢与603马氏体高强钢焊接接头组织及性能

  • 杨东青1, 张建1, 范霁康1,2, 周赵1, 王克鸿1
作者信息 +

Microstructures and Mechanical Properties of Welded Joints Made of 603 High Strength Steel and High Nitrogen AusteniticStainless Steel

  • YANG Dongqing1, ZHANG Jian1, FAN Jikang1,2, ZHOU Zhao1, WANG Kehong1
Author information +
文章历史 +

摘要

高氮奥氏体不锈钢与603马氏体高强钢因优越的力学性能在装甲防护领域具有广阔的应用前景。根据“低强匹配”原则,采用ER307Mo奥氏体不锈钢焊丝对30 mm厚的高氮奥氏体不锈钢和603马氏体高强钢脉冲熔化极惰性气体保护焊对接焊接,并分析焊接接头微观组织及力学性能。研究结果表明:试验得到了表面成形良好、内部无裂纹、未熔合等缺陷的焊接接头;焊缝组织主要为奥氏体以及被奥氏体基体包围的铁素体树枝晶,高氮奥氏体不锈钢熔合线附近组织主要为奥氏体,603钢熔合线附近组织主要为条片状马氏体、贝氏体以及回火马氏体;接头的断裂形式以韧性断裂为主,存在少量的解理断裂特征,能谱仪点扫描结果表明,韧窝中心的第2相粒子为富Fe的碳化物;焊接接头的平均抗拉强度达722 MPa,平均断后延伸率达20.2%;焊缝金属的动态屈服强度为913 MPa,最大工程应力为2 045 MPa,抗冲击性能优于603钢母材。

Abstract

Due to superior mechanical properties, high nitrogen austenitic stainless steel and 603 martensitic high strength steel are ideal materials for armor protection. According to the principle of “low strength matching”, ER307Mo austenitic stainless steel wire is selected for welding 30mm thick high nitrogen austenitic stainless steel and 603 martensitic high strength steel by pulse MIG butt welding. The microstructures and mechanical properties of the welded joints are analyzed. The results show that the welded joints with good surface appearance and no internal cracks and fusion defects are obtained. The microstructure is primarily austenite and ferrite dendrite surrounded by austenite matrix. The microstructure near the fusion line of high nitrogen austenite stainless steel is mainly austenite, and the microstructure near the fusion line of 603 steelis mainly strip martensite, bainite and tempered martensite. The joint's fracture is mainly ductile fracture, with a small percentage of cleavage fracture. EDS point scanning results show that the second phase particles at the center of the dimple are Fe rich carbides. The average tensile strength of the welded joints is 722 MPa and the average elongation after fracture is 20.2%. The dynamic yield strength of the welding metal is 913 MPa, the maximum engineering stress is 2 045 MPa, and the impact resistance exceeds that of the 603 steel base metal.

关键词

高氮奥氏体不锈钢 / 603马氏体高强钢 / ER307Mo焊丝 / 微观组织 / 力学性能

Key words

highnitrogenausteniticstainlesssteel / 603martensitichighstrengthsteel / ER307Mowire / microstructure / mechanicalproperties

引用本文

导出引用
杨东青, 张建, 范霁康, 周赵, 王克鸿. 高氮奥氏体不锈钢与603马氏体高强钢焊接接头组织及性能. 兵工学报. 2022, 43(8): 1990-1997 https://doi.org/10.12382/bgxb.2021.0490
YANG Dongqing, ZHANG Jian, FAN Jikang, ZHOU Zhao, WANG Kehong. Microstructures and Mechanical Properties of Welded Joints Made of 603 High Strength Steel and High Nitrogen AusteniticStainless Steel. Acta Armamentarii. 2022, 43(8): 1990-1997 https://doi.org/10.12382/bgxb.2021.0490

基金

国防基础科研项目(2017年)

参考文献


[1]BAID, LIU F D, ZHONG H, et al. Corrosion behavior and passivation protection mechanism on different zone of high-nitrogen steel weld[J]. Materials Letters, 2021, 300: 130194.
[2]彭云, 宋亮, 赵琳, 等. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
PENG Y, SONG L, ZHAO L, et al. Research status of weldability of advanced steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 601-618.(in Chinese)
[3]MOHMMED R, REDDY G M, RAO K S. Welding of nickel free high nitrogen stainless steel: microstructure and mechanical properties[J]. Defence Technology, 2017, 13(2): 59-71.
[4]ZHAO L, TIAN Z L, PENG Y. Control of nitrogen content and porosity in gas tungsten arc welding of high nitrogen steel[J]. Science and Technology of Welding and Joining, 2009, 14(1): 87-92.
[5]张峰, 李光强, 朱诚意. 高氮钢制备及焊接过程中氮的溶解与释放[J]. 材料与冶金学报, 2006, 5(1):14-19.
ZHANG F, LI G Q, ZHU C Y. Dissolution and release of nitrogen during preparing and welding of high nitrogen steel[J]. Journal of Materials and Metallurgy, 2006, 5(1): 14-19. (in Chinese)
[6]李欣欣, 张宏, 刘凤德, 等. 高氮钢复合焊接接头组织性能分析[J]. 激光技术, 2018, 42(3):341-345.
LI X X, ZHANG H, LIU F D, et al. Analysis of microstructure and properties of welded joint of high nitrogen steel by hybrid welding[J]. Laser Technology, 2018, 42(3): 341-345.(in Chinese)
[7]MOHAMMEDR, RAO K S, REDDY G M. Effect of microstructure on stress corrosion cracking behaviour of high nitrogen stainless steel gas tungsten arc welds[J]. IOP Conference Series: Materials Science and Engineering, 2018, 330(1):12-15.
[8]FRECHARDS, REDIAIEMIA A, LACH E, et al. Mechanical behaviour of nitrogen-alloyed austenitic stainless steel hardened by warm rolling[J]. Materials Science & Engineering A, 2006, 415(1/2):219-224.
[9]滕彬, 李小宇, 雷振, 等. 低合金高强钢激光-电弧复合热源焊接冷裂纹敏感性分析[J]. 焊接学报, 2010, 31(11):61-64.
TENG B, LI X Y, LEI Z, et al. Sensitivity analysis of cold Crack in laser-arc composite heat source welding of low alloy high strength steel[J]. Acta Armamentarii, 2010, 31(11): 61-64. (in Chinese)
[10]罗晔. 国外高硬度装甲钢焊接工艺进展[J]. 大型铸锻件, 2020, 195(3): 8-11.
LUO Y. Review on welding technology of high hardness armor steels for combat vehicles[J]. Heavy Castings and Forgings, 2020, 195(3): 8-11. (in Chinese)
[11]谭俊, 张勇. 装甲钢焊接技术研究进展[J]. 兵工学报, 2013, 34(1): 115-124.
TAN J, ZHANG Y. Research on welding processes of armor steels[J]. Acta Armamentarii, 2013, 34(1): 115-124. (in Chinese)
[12]ZHAOL, TIAN Z L, PENG Y, et al. Influence of nitrogen and heat input on weld metal of gas tungsten arc welded high nitrogen steel[J]. Journal of Iron and Steel Research (International), 2007, 14(5): 259-262.
[13]马良超, 王大锋, 马冰, 等. 不同氮含量焊丝熔化极气体保护焊高氮钢的微观组织与力学性能[J]. 兵工学报, 2021, 42(6): 1303-1311.
MA L C, WANG D F, MA B, et al.Microstructure and mechanical property of high-nitrogen steel with gmaw welding wires with different nitrogen contents[J].Acta Armamentarii, 42(6):1303-1311. (in Chinese)
[14]ZENG L. Gas metal arc welding of High nitrogen stainless steel with Ar-N2-O2 ternary shielding gas[J]. Defence Technology, 2020, 17(3): 923-931.
[15]明珠, 王克鸿, 王伟, 等.焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响[J]. 焊接学报, 2019, 40(1): 104-108, 165-166.
MING Z,WANG K H,WANG W. et al. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 104-108, 165-166. (in Chinese)
[16]荆皓, 王克鸿, 强伟, 等. 氮含量对高氮钢PMIG焊接头组织和性能的影响[J]. 焊接学报, 2017, 38(4): 95-98, 133.
JING H, WANG K H, QIANG W, et al. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. Transactions of the China Welding Institution, 2017, 38(4): 95-98, 133. (in Chinese)
[17]邓才智, 邓文科, 何蔚. 1 000 MPa级高强钢焊接试验研究[J]. 焊接技术, 2019, 48(8): 38-40, 6.
DENG C Z, DENG W K, HE W. Research on welding test of 1 000 MPagrade high strength steel[J]. Welding Technology, 2019, 48(8): 38-40, 6.(in Chinese)
[18]谭伟, 张骅, 韩文政, 等. 提高装甲车辆T型焊接接头疲劳寿命的措施研究[J]. 兵工学报, 2003,24(4): 540-543.
TAN W, ZHANG H, HAN W Z, et al. Measures to improve the fatigue lifetime of welded tee joints in armored vehicles[J]. Acta Armamentarii, 2003, 24(4): 549-554.(in Chinese)
[19]王冬生, 谭兵, 王有祁, 等. 616高强钢单双丝MIG焊接性对比研究[J]. 兵器材料科学与工程, 2007,30(4): 24-27.
WANG D S, TAN B, WANGY Q.Contrast research on single/double wire MIG weldability of 616 high strength steel[J]. Ordnance Material Science and Engineering, 2007, 30(4): 24-27. (in Chinese)
[20]DOBOSY , LUKACS J. The effect of the filler material choice on the high cycle fatigue resistance of high strength steel welded joints[J].Materials Science Forum, 2017, 885: 111-116.
[21]王伟光, 张天理, 于一帆,等. 高强钢焊接接头显微组织的研究进展[J]. 理化检验:物理分册, 2021, 57(3): 50-55.
WANG W G, ZHANG T L, YU Y F, et al. Research progress on microstructure of welded joint of high strength steel[J]. Physica Testing and Chemical Analysis,Part A:Physical Testing, 2021, 57(3): 50-55.(in Chinese)
[22]杨东青, 熊涵英, 黄勇,等. 高氮奥氏体焊丝焊接超高强钢接头组织和性能[J]. 焊接学报, 2020, 41(12): 44-48, 99-100.
YANG D Q, XIONG H Y, HUANG Y, et al. Microstructure and properties of ultra-high strength steel joints welded with high nitrogen austenitic wire[J]. Transactions of the China Welding Institution, 2020, 41(12): 44-48, 99-100.(in Chinese)


177

Accesses

0

Citation

Detail

段落导航
相关文章

/