重载车辆进气中冷管振动特性及设计改进

刘宇航;刘鑫;张生;李洪彪

兵工学报 ›› 2022, Vol. 43 ›› Issue (8) : 1753-1762.

兵工学报 ›› 2022, Vol. 43 ›› Issue (8) : 1753-1762. DOI: 10.12382/bgxb.2021.0449
论文

重载车辆进气中冷管振动特性及设计改进

  • 刘宇航1, 刘鑫2, 张生1, 李洪彪1
作者信息 +

Vibration Characteristics and Improved Design of Intake-Cooling Pipes for Heavy Duty Vehicles

  • LIU Yuhang1, LIU Xin2, ZHANG Sheng1, LI Hongbiao1
Author information +
文章历史 +

摘要

某重载车辆的进气系统由左右两侧进气中冷钢管以及中冷器组成,在车辆交付使用过程中发现左侧进气中冷管常发生失效现象,右侧则未发生过失效。为考察中冷钢管的失效原因,对两侧管路的振动情况进行试验,分别在车辆原地取力和行驶工况下收集了进气系统不同测点的振动加速度数据。通过分析试验数据发现:左侧管路在车辆原地取力、发动机1 700 r/min工况下会发生共振,右侧管路受到发动机的激振加速度相比左侧管路更大;在0~200 Hz内左右两侧管路振动的主频成分相差不大,对左侧中冷钢管进行频响计算发现共振频率主要发生在138 Hz,该频率下钢管根部的最大应力为74.2 MPa。通过对比左右两侧中冷管设计参数,对左侧进气中冷管的结构进行设计改进,并对改进后的结构再次进行仿真计算和试验。研究结果表明,该改进结构成功避开了激振的主频成分,同时也有效改善了不同工况下的管路振动情况。

Abstract

The intake system of a heavy duty vehicle consists of intake-cooling iron pipes on both sides and an intercooler. After delivery to user, cracks are often found on the left cooling pipe, whereas the right pipe is in good condition. Vibration tests of the intake system are conducted to find out the reasons for the failure. In-situ and running vibration acceleration data are collected. Through data analysis, it is found that resonance occurs to the left intake pipe under in-situ condition or when the engine is operating at 1 700 r/min. The right intake pipe bears greater excitation acceleration than the left one. Both sides of the intake pipes share similar dominant frequencies between 0-200 Hz. According to the frequency response simulation of the left intake pipe, the resonance frequency occurs at 138 Hz and the maximum stress at the bottom of the pipe is 74.2 MPa. The structure of the left intake pipe is developed by comparing the left and right intake pipes’ parameters. Both simulation and vibration tests are conducted on the improved intake pipe. The results show that the improved pipe successfully avoids the main excitation frequency and the vibration conditions are also improved under different road conditions.

关键词

进气中冷管 / 振动 / 试验 / 频响计算

Key words

intake-coolingpipes / vibration / experiment / frequencyresponsesimulation

引用本文

导出引用
刘宇航, 刘鑫, 张生, 李洪彪. 重载车辆进气中冷管振动特性及设计改进. 兵工学报. 2022, 43(8): 1753-1762 https://doi.org/10.12382/bgxb.2021.0449
LIU Yuhang, LIU Xin, ZHANG Sheng, LI Hongbiao. Vibration Characteristics and Improved Design of Intake-Cooling Pipes for Heavy Duty Vehicles. Acta Armamentarii. 2022, 43(8): 1753-1762 https://doi.org/10.12382/bgxb.2021.0449

参考文献


[1]魏学颜, 王彦军, 颜景茂. 汽车整车产品质量检验评定方法:QC/T 900—1997[S]. 北京:全国汽车标准化技术委员会, 1997.
WEI X Y, WANG Y J, YAN J M. Automobile quality inspection and assessment methods[S]. Beijing: National Technical Committee of Auto Standardization, 1997.(in Chinese)
[2]袁泉, 王晓艳, 纪宏波, 等. 柴油机排气歧管热机疲劳失效仿真研究[J]. 内燃机工程, 2020, 41(3): 87-92.
YUAN Q, WANG X Y, JI H B, et al. Simulation study of thermomechanical fatigue failure of diesel exhaust manifold [J].Chinese Internal Combustion Engine Engineering,2020,41(3):87-92. (in Chinese)
[3]KUMAWATA, WAGHULDE K B, KUMAWAT S. FEM based modal and harmonic response study of stepped shaft having cracks and optimize using ann method[J].Journal of Engineering Research and Reports, 2020: 1-12.
[4]张俊红,李林洁,刘海,等.基于经验模态分解和独立成分分析的柴油机噪声源识别技术[J].内燃机学报,2012,30(6):544-549.
ZHANG J H, LI L J, LIU H, et al. Identification of diesel engine noise source based on empirical mode decomposition and independent component analysis using EMD-ICA[J].Transactions of CSICE, 2012,30(6):544-549. (in Chinese)
[5]李杰, 陈涛, 郭文翠, 等. 汽车非平稳随机振动空间域虚拟激励法及应用[J].吉林大学学报(工学版), 2021, 51(1):1-7.
LI J, CHEN T, GUO W C, et al. Pseudo excitation method of vehicle non-stationary random vibration in space domain and its application[J].Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 1-7. (in Chinese)
[6]GRAMI S, NAWAYSEH N, HAMDAN S. Effect of car speed on the transmission of vibration through the seat pan and backrest: field study[J].International Journal of Vehicle Noise and Vibration, 2019, 15(2/3): 192-204.
[7]WANG Y, LIM T C. An experimental and computational study of the dynamic characteristics of spot-welded sheet metal structures[C]∥Proceedings of SAE 2001 World Congress. Detroit, MI, US: SAE, 2001:2001-01-0431.
[8]侯献军, 莫丽蓉, 刘志恩, 等. 基于频响分析的某特种车辆结构优化设计[J].武汉理工大学学报:交通科学与工程版, 2017, 41(1): 43-46.
HOU X J, MO L R, LIU Z E, et al. Structure optimization design of special vehicle based on frequency response analysis[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2017, 41(1):43-46. (in Chinese)
[9]成大先. 机械设计手册: 1卷3篇[M].第5版.北京:化学工业出版社, 2007: 8-12.
CHENG D X. Handbook of mechanical design:Volume I, Part III[M]. 5th ed.Beijing:Chemical Industry Press Co. Ltd.,2007: 8-12.(in Chinese)
[10]王成, 毛飞鸿, 侯威, 等. 基于动态扭矩测试的综合传动系统主轴低周疲劳寿命预测与验证[J].兵工学报, 2020, 41(7): 1262-1269.
WANG C, MAO F H, HOU W, et al. Low-cycle fatigue life prediction and validation of main shaft of power-shaft steering transmission based on dynamic torque measurement[J]. Acta Armamentarii, 2020, 41(7):1262-1269. (in Chinese)
[11]李守成, 王珊燕, 赵剑英. 机械振动 道路路面谱测量数据报告:GB/T 7031—2005[S]. 北京:国家标准化管理委员会, 2005.
LI S C, WANG S Y, ZHAO J Y. Mechanical vibration-road surface profiles-reporting of measured data[S]. Beijing: Standard Administration, 2005. (in Chinese)
[12]Altairhypermesh Desktop 2019 tutorials[M]. Troy, MI, US: Altair Engineering Inc., 2019: 1-7.
[13]范天佑.断裂理论基础[M]. 北京:科学出版社, 2003:1-20.
FAN T Y. Theoretical basis of fracture[M]. Beijing: Science Press, 2003:1-20. (in Chinese)
[14]BAYRAKCEKEN H, TASGETIREN S, YAVUZ I. Two cases of failure in the power transmission system on vehicles: a universal joint yoke and a drive shaft[J]. Engineering Failure Analysis, 2007, 14(4):716-724.
[15]李红庆, 杨万里, 刘国庆, 等. 内燃机排气歧管热应力分析[J]. 内燃机工程, 2005, 26(5): 81-84.
LI H Q, YANG W L, LIU G Q, et al. thermal stress analysis of ICE exhaust manifold[J]. Chinese Internal Combustion Engine Engineering, 2005, 26(5): 81-84.(in Chinese)
[16]厉鑫波, 周劲松, 宫岛, 等. 基于随机振动环境归纳的车辆设备疲劳寿命设计[J]. 同济大学学报(自然科学版), 2020, 48(8): 1208-1215.
LI X B, ZHOU J S, GONG D, et al. fatigue lifetime estimation of rail vehicle equipment based on inductive method of random vibration environment[J]. Journal of Tongji University (Natural Science), 2020, 48(8): 1208-1215. (in Chinese)
[17]HBM United Kingdom Limited. DesignLife theory guide[M]. UK:HBM United Kingdom Limited, 2017: 65-74.
[18]刘青民, 陈艳军, 林远, 等. 硅橡胶混炼胶 一般用途:GB/T 33402—2016[S]. 北京:国家标准化管理委员会, 2016.
LIU Q M, CHEN Y J, LIN Y, et al. Silicone rubber compound - general purpose: GB/T 33402—2016[S]. Beijing: Standard Administration, 2016. (in Chinese)
[19]费康红, 吉连忠. 硫化橡胶或热塑性橡胶 拉伸应力应变性能的测定:GB/T 528—2009[S].北京:国家标准化管理委员会, 2009.
FEI K H, JI L Z. Rubber, vulcanized or thermoplastic-determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: Standard Administration, 2009.(in Chinese)
[20]韩雷, 耿福民. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): 529—2008[S]. 北京:国家标准化管理委员会, 2008.
HAN L, GENG F M. Rubber,vulcanized or thermoplastic-determination of tear strength(trouser,angle and crescent test pieces): 529—2008[S]. Beijing:Standard Administration, 2008. (in Chinese)


文章所在专题

特种车辆理论与技术

179

Accesses

0

Citation

Detail

段落导航
相关文章

/