为了研究高强度合金钢长杆弹超高速侵彻砂浆混凝土靶时侵彻深度发生逆减的临界速度,开展了30CrMnSiNi2A长杆弹以初速度1 381~1 879 m/s侵彻半无限砂浆混凝土靶的实验。实验结果表明:靶板的开坑直径、开坑深度、开坑体积以及弹道孔径与侵彻速度呈近似线性关系;当侵彻速度小于1 724 m/s时,侵彻深度随速度的增大而增大;当侵彻速度大于1 724 m/s时,侵彻深度随速度的增大而减小;当速度为1 724 m/s时,侵彻深度达到最大。靶板的剖分结果显示:当长杆弹超高速侵彻靶板时,弹体着靶时微小的倾角会导致侵彻弹道发生严重的偏转,呈现为“J”字形弹道。基于实验结果,在考虑长杆弹头部变形的基础上利用修正的A-T模型,得到了长杆弹超高速侵彻砂浆混凝土靶时侵彻深度发生逆减的临界速度,分析了不同的弹靶参数对临界速度的影响,并结合实验数据,验证了理论模型的可靠性。
Abstract
A high-strength alloy steel long-rod projectile of 30CrMnSini2A was tested at speeds of 1 381 m/s~1 879 m/s into a semi-infinite mortar concrete target to determine the critical velocity for reverse decrement of penetration depth. The results show an approximate linear relationship between the penetration velocity and crater diameter, crater depth, crater volume, and ballistic aperture. When the penetration velocity is lower than 1 724 m/s, penetration depth increases with increasedvelocity;when it is higher than 1 724 m/s, penetration depth decreases with increased velocity. Penetration depth reaches its maximum when the velocity reaches 1 724 m/s.Target dissection results show that when the long-rod projectile penetrates the target at hypervelocity, the smallhitting attitude of the projectile leads to a serious deflection in the penetration trajectory, which is a “J” shape.Based on the experimental results, the modified A-T model is used to determinethe critical velocity at which the penetration depth of the long-rod projectile decreases when the long-rod projectile penetrates the mortar target at hypervelocity, to analyze the influence of different projectile and target parameters on the critical velocity, and to verify the validity of the theoretical model based on experimental data.
关键词
超高速侵彻 /
长杆弹 /
侵彻弹道 /
A-T模型 /
临界速度
{{custom_keyword}} /
Key words
hypervelocitypenetration /
long-rodprojectile /
penetrationtrajectory /
A-Tmodel /
criticalvelocity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]高飞,张国凯,纪玉国,等.卵形弹体超高速侵彻砂浆靶的响应特性[J]. 兵工学报, 2020, 41(10): 1979-1987.
GAO F, ZHANG G K, JI Y G, et al. Response characteristics of hypervelocity ogive-nose projectile penetrating into mortar target[J]. Acta Armamentarii, 2020, 41(10): 1979-1987. (in Chinese)
[2]GOLDV M. Concrete penetration by eroding projectiles: experiments and analysis[J]. Journal of Engineering Mechanics, 1996, 122(2):145-152.
[3]练兵.高速动能杆对混凝土靶的侵彻毁伤研究[D].北京:北京理工大学,2010.
LIAN B. Penetration and damage of concrete with high velocity kinetic energy rod[D]. Beijing: Beijing Institute of Technology,2010.(in Chinese)
[4]练兵,蒋建伟,门建兵,等.高速长杆弹对混凝土靶侵彻规律的仿真分析[J].高压物理学报, 2010, 24(5): 377-382.
LIAN B, JIANG J W, MEN J B, et al. Simulation analysis on law of penetration of long-rod projectiles with high speed into concrete[J].Chinese Journal of High Pressure Physics, 2010, 24(5): 377-382.(in Chinese)
[5]宋梅利,李文彬,王晓鸣,等.弹体高速侵彻效率的实验和量纲分析[J].爆炸与冲击, 2016, 36(6): 752-758.
SONG M L, LI W B, WANG X M, et al.Experiments and dimensional analysis of high-speed projectile penetration efficiency[J].Explosion and Shock Waves, 2016, 36(6): 752-758. (in Chinese)
[6]DAVIS R N, NEELY A M, JONES S E. Mass loss and blunting during high-speed penetration[J]. Archive Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2004, 218(9):1053-1062.
[7]LIU C, ZHANG X,CHEN H, et al. Experimental and theoretical study on steel long-rod projectile penetration into concrete targets with elevated impact velocities[J]. International Journal of Impact Engineering,2019, 138:103482.
[8]KONG X Z, WU H, FANG Q, et al. Projectile penetration into mortar targets with a broad range of striking velocities: test and analyses[J]. International Journal of Impact Engineering, 2017, 106:18-29.
[9]KONG X Z, WU H, FANG Q, et al. Rigid and eroding projectile penetration into concrete targets based on an extended dynamic cavity expansion model[J].International Journal of Impact Engineering, 2017, 100:13-22.
[10]CHENX W, LI Q M. Transition from nondeformable projectile penetration to semi-hydrodynamic penetration[J]. Journal of Engineering Mechanics, 2004, 130(1): 123-127.
[11]ROSENBERGZ, DEKEL E. A critical examination of the modified Bernoulli equation using two-dimensional simulations of long rod penetrators[J]. International Journal of Impact Engineering, 1994, 15(5):711-720.
[12]WANG P, JONES S E. An elementary theory of one-dimensional rod penetration using a new estimate forpressure[J]. International Journal of Impact Engineering, 1995, 18(3): 265-279.
[13]刘闯,张先锋,黄长强,等.半球头长杆弹高速侵彻半无限厚靶临界速度理论模型[J]. 振动与冲击, 2019, 38(9): 8-14.
LIU C, ZHANG X F, HUANG C Q, et al. Critical speed theoretical model for hemispherical long rod projectiles' penetrating semi-infinite thick target at high velocity[J]. Journal of Vibration and Shock, 2019, 38(9): 8-14. (in Chinese)
[14]王可慧,宁建国,李志康,等.高速弹体非正侵彻混凝土靶的弹道偏转实验研究[J].高压物理学报,2013, 27(4): 561-566.
WANG K H, NING J G, LI Z K, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target[J].Chinese Journal of High Pressure Physics, 2013, 27(4): 561-566.(in Chinese)
[15]钱秉文,周刚,李进,等.钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度研究[J].爆炸与冲击, 2019, 39(8): 083301.
QIAN B W, ZHOU G, LI J, et al. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J].Explosion and Shock Waves, 2019, 39(8):083301. (in Chinese)
[16]陈海华,张先锋,刘闯,等.基于弯管-流线模型的长杆弹侵彻头部材料流动过程分析[J].兵工学报, 2019, 40(9): 1787-1796.
CHEN H H, ZHANG X F, LIU C, et al. Analysis of material flow around projectile nose by elbow-streamline model during long-rod projectile penetrating into steel target[J]. Acta Armamentarii, 2019, 40(9): 1787-1796.(in Chinese)
[17]宋春明,李干,王明洋,等.不同速度段弹体侵彻岩石靶体的理论分析[J].爆炸与冲击,2018,38(2): 250-257.
SONG C M,LI G,WANG M Y,et al.Theoretical analysis of projectiles penetrating into rock targets at different velocities[J].Explosion and Shock Waves,2018,38(2): 250-257. (in Chinese)
[18]中国建筑科学研究院.混凝土强度检验评定标准[M]. 北京:中国计划出版社, 1988.
China Academy of Building Science. Standard for concrete strength inspection and evaluation [M]. Beijing: China Plans Publishing House, 1988. (in Chinese)
[19]TATE A. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics & Physics of Solids, 1967, 15(6): 387-399.
[20]ALEKSEEVSKII V P. Penetration of a rod into a target at high velocity[J]. Combustion Explosion & Shock Waves, 1966, 2(2): 63-66.
[21]TATE A. Long rod penetration models-Part II. Extensions to the hydrodynamic theory of penetration[J]. International Journal of Mechanical Sciences, 1986,28(9): 599-612.
[22]徐晨阳.弹体高速侵彻典型岩石粑体作用过程研究[D].南京:南京理工大学,2018.
XU C Y. Research on the process of projectile penetrating into typical rock at high speed[D]. Nanjing: Nanjing University of Science and Technology,2018. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}