级联电源时序控制方法

谭强;高迎慧;陈洪涛;康鑫;孙鹞鸿;严萍

兵工学报 ›› 2022, Vol. 43 ›› Issue (3) : 704-711.

兵工学报 ›› 2022, Vol. 43 ›› Issue (3) : 704-711. DOI: 10.12382/bgxb.2021.0112
论文

级联电源时序控制方法

  • 谭强1,2,3, 高迎慧1,2, 陈洪涛1,2, 康鑫1,2, 孙鹞鸿1,2,3, 严萍1,2,3
作者信息 +

Time Sequence Control Method for Series Power Supply

  • TAN Qiang1,2,3, GAO Yinghui1,2, CHEN Hongtao1,2, KANG Xin1,2, SUN Yaohong1,2,3, YAN Ping1,2,3
Author information +
文章历史 +

摘要

电池组级联(BPCSs)电源的脉冲电容器电压是电磁推进的关键指标,重频模式下电池组多次为脉冲电容器充电后容量衰减,脉冲电容器电压在规定时间内达不到电压设定值,电磁推进的一致性将无法保证。基于BPCSs电源理论模型,提出一种时序动态调整算法,通过调整电池组串入回路的时刻来提高充电速度。实验结果表明:在电池组容量衰减40 V情况下,该算法充电时间缩短9.3%,平均电流提升10.2%,平均功率提升10.3%,能够保证重频模式下脉冲电容器电压及时达到设定值。

Abstract

The pulse capacitor voltage for battery packs connected in series (BPCSs) power supply is a key metric in electromagnetic propulsion. In the repetitively charging mode, the capacity fades after the battery pack charging the pulse capacitor for many times, thus making the pulse capacitor voltage not reach the setting value of voltage in the specified time. Hence, the consistency of the electromagnetic propulsion cannot be guaranteed. A time sequence dynamic adjustment algorithm is proposed based on the theoretical model of BPCSs power supply. The time sequences are adjusted to improve the charging speed when the battery packs are connected into the circuit. The experimental results show that the charging time is shortened by 9.3%, the average current is increased by 10.2% and the average power is increased by 10.3% using the proposed method at the capacity-loss of 40 V, which makes the voltage of pulse capacitor reach the setting value in time in the repetitively charging mode.

关键词

电池组级联 / 时序 / 重频 / 充电时间

Key words

batterypacksconnectedinseries / timesequence / repetitivelychargingmode / chargingtime

引用本文

导出引用
谭强, 高迎慧, 陈洪涛, 康鑫, 孙鹞鸿, 严萍. 级联电源时序控制方法. 兵工学报. 2022, 43(3): 704-711 https://doi.org/10.12382/bgxb.2021.0112
TAN Qiang, GAO Yinghui, CHEN Hongtao, KANG Xin, SUN Yaohong, YAN Ping. Time Sequence Control Method for Series Power Supply. Acta Armamentarii. 2022, 43(3): 704-711 https://doi.org/10.12382/bgxb.2021.0112

基金

“十三五”重大科研项目(2021年)

参考文献


[1]王莹, 孙元章, 刘开培, 等. 脉冲功率科学与技术[M]. 北京: 北京航空航天大学出版社, 2010: 2-3.
WANG Y, SUN Y Z, LIU K P, et al. Science and technology on pulsed power[M]. Beijing, China: Beihang University Press, 2010: 2-3. (in Chinese)
[2]马伟明, 鲁军勇. 电磁发射技术[J]. 国防科技大学学报, 2016, 38(6): 1-5.
MA W M, LU J Y. Electromagnetic launch technology[J]. Journal of National University of Defense Technology, 2016, 38(6):1-5. (in Chinese)
[3]鲁军勇, 马伟明. 电磁轨道发射理论与技术[M]. 北京: 科学出版社, 2020: 98-99.
LU J Y, MA W M. Electromagnetic rail launch theory and technology[M]. Beijing: Science Press, 2020: 98-99. (in Chinese)
[4]蔡敏怡, 张娥, 林靖, 等. 串联锂离子电池组均衡拓扑综述[J]. 中国电机工程学报, 2021, 41(15): 5294-5310.
CAI M Y, ZHANG E, LIN J, et al. Review on balancing topology of lithium-ion battery pack[J]. Proceedings of the CSEE, 2021, 41(15): 5294-5310. (in Chinese)
[5]董健年, 桂应春, 李军, 等. 电磁弹射系统的脉冲功率源设计[J]. 高电压技术, 2007, 33(12): 105-107.
DONG J N, GUI Y C, LI J, et al. Design of pulsed power supply for electromagnetic launch[J]. High Voltage Engineering, 2007, 33(12): 105-107. (in Chinese)
[6]LIUL Z, MAI R K, XU B, et al. Design of parallel resonant switched-capacitor equalizer for series-connected battery strings[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9160-9169.
[7]马晓军, 可荣硕, 魏曙光, 等. 串联电池组的母线式电压采集系统优化设计[J]. 兵工学报, 2014, 35(5): 577-583.
MA X J, KE R S, WEI S G, et al. Optimal design of bus-type voltage acquisition system[J]. Acta Armamentarii, 2014, 35(5):577-583. (in Chinese)
[8]程显, 夏荣翔, 葛国伟, 等. 基于感应叠加原理的模块化脉冲电源的研制[J]. 高电压技术, 2021, 47(3): 778-785.
CHENG X, XIA R X, GE G W, et al. Development of modular pulse generator based on inductive adding principle[J]. High Voltage Engineering, 2021, 47(3): 778-785. (in Chinese)
[9]周仁, 鲁军勇, 龙鑫林, 等. 混合储能蓄电池组放电均衡优化研究[J]. 海军工程大学学报, 2016, 28(3): 105-109.
ZHOU R, LU J Y, LONG X L, et al. Discharging equalizer optimization study of power batteries for hybrid energy storage[J]. Journal of Naval University of Engineering, 2016, 28(3): 105-109. (in Chinese)
[10]李超, 鲁军勇, 江汉红, 等. 电磁发射用多级混合储能充电方式对比[J]. 强激光与离子束, 2015, 27(7): 234-239.
LI C, LU J Y, JIANG H H, et al. Comparison of charging methods of multilevel hybrid energy storage for electromagnetic launch[J]. High Power Laser and Particle Beams, 2015, 27(7):234-239. (in Chinese)
[11]吴海峰, 鲁军勇, 马伟明, 等. 大功率混合储能装置控制策略研究[J]. 西安交通大学学报, 2015, 49(2): 93-98.
WU H F, LU J Y, MA W M, et al. Control strategy for high power hybrid energy storage device[J]. Journal of Xi'an Jiaotong University, 2015, 49(2): 93-98. (in Chinese)
[12]谈发明, 赵俊杰, 李秋烨. 基于简化滞回OCV模型的锂电池SOC自适应估计策略[J]. 中国电机工程学报, 2021, 41(2):703-714.
TAN F M, ZHAO J J, LI Q Y. Adaptive SOC estimation strategy for lithium battery based on simplified hysteresis OCV model[J]. Proceedings of the CSEE, 2021, 41(2): 703-714. (in Chinese)
[13]张金龙, 佟微, 漆汉宏. 锂电池发展浅谈[J]. 电源技术, 2017, 41(9): 1377-1379.
ZHANG J L, TONG W, QI H H. Discussion of lithium battery development[J]. Chinese Journal of Power Sources, 2017, 41(9):1377-1379. (in Chinese)
[14]冯莉原, 宋凌珺, 周兴振, 等. 钴酸锂电池性能研究[J]. 电源技术, 2018, 42(3): 339-342.
FENG L Y, SONG L J, ZHOU X Z, et al. Study on performance of LiCoO2 battery[J]. Chinese Journal of Power Sources, 2018, 42(3): 339-342. (in Chinese)
[15]高飞, 杨凯, 惠东, 等. 储能用磷酸铁锂电池循环寿命的能量分析[J]. 中国电机工程学报, 2013, 33(5): 41-45.
GAO F, YANG K, HUI D, et al. Cycle-life energy analysis of LiFePO4 batteries for energy storage[J]. Proceedings of the CSEE, 2013, 33(5): 41-45. (in Chinese)
[16]樊亚翔, 肖飞, 许杰, 等. 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 41(16):5661-5669.
FAN Y X, XIAO F, XU J, et al. State of health estimation of lithium-ion batteries based on the partial charging voltage segment and kernel ridge regression[J]. Proceedings of the CSEE, 2021, 41(16): 5661-5669. (in Chinese)
[17]李超, 鲁军勇, 江汉红, 等. 混合储能中电容器电压精确控制策略研究[J]. 高电压技术, 2015, 41(7): 2231-2235.
LI C, LU J Y, JIANG H H, et al. Study of capacitor voltage precise-control strategy of multilevel hybrid energy storage[J]. High Voltage Engineering, 2015, 41(7): 2231-2235. (in Chinese)
[18]LIUK, SUN Y H, GAO Y H, et al. High-voltage high-frequency charging power supply based on voltage feedback and phase-shift control[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1358-1363.
[19]LIU K, GAO Y H, FU R Y, et al. Design of control system for battery cascade charging power supply[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1245-1250.
[20]龙鑫林, 鲁军勇, 张晓, 等. 混合储能系统能量转移双环控制策略[J]. 海军工程大学学报, 2016, 28(3): 13-16.
LONG X L, LU J Y, ZHANG X, et al. Double loop control method for hybrid energy storage system[J]. Journal of Naval University of Engineering, 2016, 28(3): 13-16. (in Chinese)
[21]谭强, 高迎慧, 刘坤, 等. 基于电池组级联的高压恒流电源电流控制方法研究[J]. 电工电能新技术, 2020, 39(9): 48-55.
TAN Q, GAO Y H, LIU K, et al. Research on current control method of high-voltage and constant current charging power supply based on battery packs connected in series[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(9): 48-55. (in Chinese)


Accesses

Citation

Detail

段落导航
相关文章

/