基于优化残差网络的复杂纹理表面缺陷检测

林李兴;夏振平;徐浩;宋玉;胡伏原

应用光学 ›› 2023, Vol. 44 ›› Issue (1) : 104-112.

应用光学 ›› 2023, Vol. 44 ›› Issue (1) : 104-112. DOI: 10.5768/JAO202344.0102006

基于优化残差网络的复杂纹理表面缺陷检测

  • 林李兴1, 夏振平1,2, 徐浩1, 宋玉2, 胡伏原2
作者信息 +

Defect detection on complex texture surface based on optimized ResNet

  • LIN Lixing1, XIA Zhenping1,2, XU Hao1, SONG Yu2, HU Fuyuan2
Author information +
文章历史 +

摘要

产品表面缺陷检测是工业自动化生产的重要环节,准确率是评价自动检测系统可靠性的主要指标。基于复杂纹理表面缺陷检测的特殊性以及对检测方法的实时性、通用性等要求,提出了优化骨干网络并使用迁移学习特征映射构建复杂纹理表面缺陷的检测方法。该方法通过优化残差网络模型并建立仿真数据集的方式进行迁移学习,以解决实际情况中复杂纹理表面产品数据集样本数量少、数据集制作困难、相似问题难以互相兼容等问题。实验结果表明,提出的方法可以准确地检测随机复杂纹理的人造木质板材表面缺陷,平均准确率可达99.6%。现有实验条件下单张人造木质板材的检测时间为305 ms,可以满足在线检测的实时性要求。研究结果可为基于深度学习的复杂纹理表面缺陷检测提供新的思路与理论参考。

Abstract

Defect detection of product surface is an important part of industrial automatic production and the accuracy is the main index to evaluate the reliability of automatic detection system. Based on the particularity of defect detection on complex texture surface and the requirements of real-time and universal detection methods, a detection method for optimizing the backbone network and using the transfer learning feature mapping to construct the complex texture surface defects was proposed. In this method, the ResNet model was optimized and the simulation data set was established for transfer learning, so as to solve the problems such as the small number of samples in the data set of complex texture surface products, the difficulty of data set making, and the difficulty of similar problems to be compatible with each other. Experimental results show that the proposed method can accurately detect the surface defects of artificial wooden plank with random complex texture, and the average accuracy can reach 99.6%. Under the existing experimental conditions, the detection time of a single artificial wooden plank is 305 ms, which can meet the real-time requirements of online detection. The research results can provide a new idea and theoretical reference for the defect detection on complex texture surface based on deep learning.

关键词

复杂纹理 / 残差网络 / 迁移学习 / 缺陷检测 / 机器视觉

Key words

machine vision / complex texture / transfer learning / ResNet / defect detection

引用本文

导出引用
林李兴, 夏振平, 徐浩, 宋玉, 胡伏原. 基于优化残差网络的复杂纹理表面缺陷检测. 应用光学. 2023, 44(1): 104-112 https://doi.org/10.5768/JAO202344.0102006
LIN Lixing, XIA Zhenping, XU Hao, SONG Yu, HU Fuyuan. Defect detection on complex texture surface based on optimized ResNet. Journal of Applied Optics. 2023, 44(1): 104-112 https://doi.org/10.5768/JAO202344.0102006

基金

国家自然科学基金(62002254,61876121)江苏省自然科学基金(BK20200988)

参考文献

郭慧, 王霄, 刘传泽, 等. 人造板表面缺陷检测图像自适应快速阈值分割算法[J]. 林业科学,2018,54(11):134-142.
朱云, 凌志刚, 张雨强. 机器视觉技术研究进展及展望[J]. 图学学报,2020,41(6):871-890.
杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报,2022,36(16):1-19.
郭慧, 盛振湘, 王霄, 等. 基于机器视觉的刨花板表面缺陷检测系统[J]. 木材科学与技术,2019,33(3):18-22.
魏智锋, 肖书浩, 蒋国璋, 等. 基于深度学习的人造板表面缺陷检测研究[J]. 林产工业,2021,58(2):21-26.
王宇杰. 基于机器视觉的塑料制品外观缺陷检测[J]. 合成树脂及塑料,2021,38(1):93-96.
刘沛津, 王曦, 贺宁. 改进GSO与二维OTSU融合的红外图像多阈值分割方法[J]. 应用光学,2021,42(4):671-677.
李漫丽, 赵鹏. 基于图像融合的木板表面缺陷检测研究[J]. 液晶与显示,2016,31(9):882-888.
贾坡, 田建艳,
GUO Hui, WANG Xiao, LIU Chuanze, et al. Research on adaptive fast threshold segmentation algorithm for surface defect detection of wood-based panel[J]. Scientia Silvae Sinicae,2018,54(11):134-142.
ZHU Yun, LING Zhigang, ZHANG Yuqiang. Research progress and prospect of machine vision technology[J]. Journal of Graphics,2020,41(6):871-890.
YANG Chuanli, ZHANG Xiuqing. Survey of material defect detection applications based on machine vision and deep learning[J]. Materials Reports,2022,36(16):1-19.
GUO Hui, SHENG Zhenxiang, WANG Xiao, et al. A system based on machien vision for detecting surface defects of particleboard[J]. Chinese Journal of Wood Science and Technology,2019,33(3):18-22.
WEI Zhifeng, XIAO Shuhao, JIANG Guozhang, et al. Research on surface defect detection of wood-based panels based on deep learning[J]. Scientia Silvae Sinicae,2021,58(2):21-26.
MUDA U R H, HASHIM S Z M, KAMILAH A. Performance evaluation of multivariate texture descriptor for classification of timber defect[J]. O

17

Accesses

0

Citation

Detail

段落导航
相关文章

/