单光子探测三维点云与可见光图像融合处理算法研究

张飞飞;彭雷;袁韬

应用光学 ›› 2021, Vol. 42 ›› Issue (6) : 1034-1039.

应用光学 ›› 2021, Vol. 42 ›› Issue (6) : 1034-1039. DOI: 10.5768/JAO202142.0602004

单光子探测三维点云与可见光图像融合处理算法研究

  • 张飞飞1, 彭雷2, 袁韬2
作者信息 +

Fusion processing algorithm of single-photon detection for three-dimensional point cloud and visible light image

  • ZHANG Feifei1, PENG Lei2, YUAN Tao2
Author information +
文章历史 +

摘要

为了提升光电系统对于目标的探测识别能力,实现单光子探测三维点云数据和二维可见光图像的融合处理,提出了单光子探测成像系统的融合处理算法,采用直接线性变换方法并利用同名特征点的选取和间接平差算法解决了融合处理过程中的参数标定问题。通过实验数据进行融合处理算法验证,实现了分辨率1024×768像素单光子探测三维点云和二维可见光图像的像素级融合处理。实验结果表明,提出的融合处理算法能够有效实现三维、二维图像的融合。

Abstract

In order to improve the detection and identification ability of the photoelectric system for the target, and achieve the fusion processing of single-photon detection of 3D point cloud data and 2D visible light images, the fusion processing algorithm of single-photon detection imaging system was proposed. A direct linear transformation method was used, and the parameter calibration problems in the process of fusion processing were solved by selection of homonymic feature points and indirect adjustment algorithm. The fusion processing algorithm was verified by the experimental data, and the pixel-level fusion processing with 1 024×768 resolution single-photon detection of 3D point cloud data and 2D visible light images was achieved. The experimental results show that the proposed fusion processing algorithm can effectively achieve the fusion of 3D and 2D images.

关键词

三维点云 / 融合 / 可见光图像 / 单光子

Key words

three-dimensional point cloud / single photon / visible light images / fusion

引用本文

导出引用
张飞飞, 彭雷, 袁韬. 单光子探测三维点云与可见光图像融合处理算法研究. 应用光学. 2021, 42(6): 1034-1039 https://doi.org/10.5768/JAO202142.0602004
ZHANG Feifei, PENG Lei, YUAN Tao. Fusion processing algorithm of single-photon detection for three-dimensional point cloud and visible light image. Journal of Applied Optics. 2021, 42(6): 1034-1039 https://doi.org/10.5768/JAO202142.0602004

基金

装备预先研究项目(30102220201)

参考文献

侯利冰, 黄庚华, 况耀武, 等. 光子计数激光测距技术研究[J]. 科学技术与工程,2013,13(18):5186-5190.
罗智斌, 张彦峰, 曹宁. 一种基于融合地面LIDAR 点云与红外视频信息的热红外三维建模方法[J]. 广东技术师范学院学报(自然科学),2014(3):55-58.
李娜. 沙漠地区机载激光点云和光学影像配准及应用研究[D]. 武汉: 武汉大学, 2015.
吴伟坊. 基于机载LiDAR系统激光点云与图像点云的融合技术[D]. 广州: 华南理工大学, 2019.
王宇岚, 孙韶媛, 刘致驿, 等. 基于多视角融合的夜间无人车三维目标检测[J]. 应用光学,2020,41(2):296-301.
吴锦秋, 刘汉君, 杨家开, 等. 可见光影像与激光雷达点云融合技术在配网树障巡检中的应用[J]. 湖南电力,2020,40(6):45-52.
牛京玉, 胡坚, 贺文静, 等. 基于C6678的主被动三维影像生成算法并行设计[J]. 红外技术,2017,39(11):983-989.
李铭, 郭颖, 杨贵, 等. 一种推扫式光
HOU Libing, HUANG Genghua, KUANG Yaowu, et al. Research of photon counting laser ranging technology[J]. Science Technology and Engineering,2013,13(18):5186-5190.
LUO Zhibin, ZHANG Yanfeng, CAO Ning. Thermal infrared three-dimensional modeling method based on the fusion of LIDAR point and ground infrared video information[J]. Journal of Guangdong Polytechnic Normal University,2014(3):55-58.
LI Na. Registration of airborne LiDAR point cloud and aerial imagery for desert areas[D]. Wuhan: Wuhan University, 2015.
WU Weifang. Fusion technology of laser point cloud and image point cloud based on airborne LiDAR system[D]. Guangzhou:South China University of Technology, 219.
WANG Yulan, SUN Shaoyuan, LIU Zhiyi, et al. Nighttime three-dimensional target detection of driverless vehicles based on multi-view channel fusion network[J]. Journal of Applied Optics,2020,41(2):296-301.
WU Jinqiu, LIU Hanjun, YANG Jiakai, et al. Application of visible image and LiDAR point cloud fusion technology in distribut

11

Accesses

0

Citation

Detail

段落导航
相关文章

/