为克服传统阵列波导光栅解调系统体积大、价格昂贵等问题,提出了以窄带光源为输入光源,采用边缘滤波和阵列波导光栅相结合的解调方案,实现对增敏封装后的光纤光栅温度传感器进行温度解调实验。以窄带光源作为输入,通过边缘滤波的方法使得温度传感器反射谱的中心波长偏移程度与解调光路输出光强的变化相对应,利用阵列波导光栅的波分复用实现多传感器同时测量,实现了多传感器多通道的分布式测量,实验结果表明:解调系统的波长解调范围为1 545.30 nm~1 560.50 nm,对35 ℃~42 ℃的温度范围进行检测,波长解调精度为±5.34 pm,温度测量误差可达±0.1 ℃。
Abstract
In order to overcome the large size and high price of the traditional arrayed wave-guide grating demodulation system, a demodulation scheme using a narrow-band light source as the input light source and adopting a combination of edge filter and arrayed wave-guide grating was proposed to realize the temperature demodulation experiment of fiber grating temperature sensor after packaging. Using the narrow-band light source as input, the edge filter method made the central wavelength shift of temperature sensor reflection spectrum correspond to the change in the output light intensity of demodulation optical path. The wavelength division multiplexing of arrayed wave-guide grating was used to realize the simultaneous measurement of multiple sensors, and the distributed measurement with multi-sensor and multi-channel was performed. The experimental results show that the wavelength demodulation range of the demodulation system is 1 545.30 nm~1 560.50 nm, the temperature range of 35 ℃~42 ℃ was detected, and the wavelength demodulation accuracy is ±5.34 pm. The temperature measurement error can reach to ±0.1 ℃.
关键词
阵列波导光栅 /
边缘解调 /
温度传感 /
光纤光栅解调
{{custom_keyword}} /
Key words
fiber grating demodulation /
temperature sensing /
arrayed wave-guide grating /
edge demodulation
{{custom_keyword}} /
基金
国家自然科学基金(61675154);天津市重点研发计划项目(19YFZCSY00180);天津市科技军民融合重大专项(18ZXJMTG00260)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
王目光, 魏淮, 童治, 等. 利用双周期光纤光栅实现应变和温度同时测量[J]. 光学学报,2002,22(7):867-869.
胡玉瑞, 唐源宏, 李川. 光纤Bragg光栅流量传感器[J]. 传感技术学报,2010,23(4):471-474.
于晓刚, 苗长云, 李鸿强, 等. 基于光纤布拉格光栅的智能服装人体测温模型研究[J]. 光学技术,2011,37(6):704-708.
王云新, 刘铁根, 江俊峰. 便携式光纤Bragg光栅波长解调仪的研制[J]. 仪器仪表学报,2007,28(6):1104-1107.
刘玮. 基于F-P滤波器的光纤光栅振动传感系统研究与设计[D]. 北京: 华北电力大学, 2014.
刘鹏飞, 郝凤欢, 何少灵, 等. 基于波长扫描的分布反馈有源光纤光栅传感器波长解调[J]. 中国激光,2016,43(10):216-221.
刘睿, 葛海波, 何其睿, 等. 基于F-P腔的双边缘滤波解调系统研究[J]. 光通信研究,2018(2):51-54.
陆霞, 张国华. 基于光纤传感技术的物联网感知数据监测方法[J]. 激光杂志,2020,41(9):
WANG Muguang, WEI Huai, TONG Zhi, et al. Simultaneous measurement of strain and temperature using a single dual-period fiber grating[J]. Acta Optica Sinica,2002,22(7):867-869.
HU Yurui, TANG Yuanhong, LI Chuan. Fiber Bragg grating flow sensor[J]. Chinese Journal of Sensors and Actuators,2010,23(4):471-474.
YU Xiaogang, MIAO Changyun, LI Hongqiang, et al. Research on human body temperature measurement models of intelligent clothing based on optical fiber Bragg grating[J]. Optical Technique,2011,37(6):704-708.
ZHU Yushuang, GUI Lin, ZHU Yuxuan. Temperature sensing for wavelength demodulation based on recognition by maximum intensity of radio frequency[J]. Acta Optica Sinica,2019,39(7):0728003.
KOO K P, KERSEY A D. Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing[J]. Journal of Lightwave Technology,1995,13(7):1243-1249.
WANG Yunxin, LIU Tiegen, JIANG Junfeng. Development of a portable wavelength demodulation instrument for fiber
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}