鲸群优化的粒子滤波算法研究

武风波;刘瑶;朱代先;王明博

应用光学 ›› 2021, Vol. 42 ›› Issue (5) : 859-866.

应用光学 ›› 2021, Vol. 42 ›› Issue (5) : 859-866. DOI: 10.5768/JAO202142.0502006

鲸群优化的粒子滤波算法研究

  • 武风波1, 刘瑶1, 朱代先1, 王明博1
作者信息 +

Particle filter algorithm based on whale swarm optimization

  • WU Fengbo1, LIU Yao1, ZHU Daixian1, WANG Mingbo1
Author information +
文章历史 +

摘要

针对标准的粒子滤波存在粒子贫化问题,提出了一种鲸群优化的粒子滤波算法。用粒子表征鲸鱼个体, 模拟鲸鱼群体搜寻猎物的过程,引导粒子向高似然区域移动。将粒子滤波中粒子的状态值作为鲸鱼群的个体位置,将粒子的状态估计转化为对鲸鱼群的寻优;通过鲸群的螺旋运动方式优化粒子的重要性采样过程,使粒子分布更加合理,对鲸群算法中的全局最优值引入最优邻域随机扰动策略,并在鲸鱼位置更新过程中加入自适应权重因子;选用一种典型的单静态非增长模型进行仿真测试。测试结果表明:提出的方法与传统的粒子滤波以及引力场优化的粒子滤波相比,在保证相同粒子数的前提下,算法的均方误差分别降低了28%和9%,证明了鲸群优化的粒子滤波算法具有更高的估计精度,并且在粒子数较少的情况下,可实现更准确的状态估计。

Abstract

Aiming at the problem of particle impoverishment in the standard particle filter, a particle filter algorithm based on the whale swarm optimization was proposed. In the algorithm, the particles were used to characterize the individual whales so as to simulate the process of whale swarm for searching preys and guide the particles to move to the high-likelihood region. Firstly, the state value of particles in particle filter was taken as the individual position of the whale swarm, and the state estimation of particles was transformed into the optimization of the whale swarm. Secondly, the importance sampling process of particles was optimized through the spiral motion mode of the whale swarm, which made the particle distribution more reasonable. In addition, the optimal neighborhood random disturbance strategy was introduced for the global optimal value in the whale swarm algorithm, and the adaptive weight factor was added in the process of whale position update. Finally, a typical single-static non-growth model was selected for the simulation test. The test results show that compared with the standard particle filter and the particle filter optimized by the gravitational field, the mean square error of the proposed algorithm is reduced by 28% and 9% respectively under the premise of the same particle number, which verifies that the particle filter algorithm optimized by the whale swarm has the higher estimation accuracy, and in the case of fewer particles, the more accurate state estimation can be achieved.

关键词

粒子滤波 / 粒子贫化 / 最优邻域 / 状态估计 / 鲸群算法

Key words

particle filter / whale swarm algorithm / particle impoverishment / the optimal neighborhood / state estimation

引用本文

导出引用
武风波, 刘瑶, 朱代先, 王明博. 鲸群优化的粒子滤波算法研究. 应用光学. 2021, 42(5): 859-866 https://doi.org/10.5768/JAO202142.0502006
WU Fengbo, LIU Yao, ZHU Daixian, WANG Mingbo. Particle filter algorithm based on whale swarm optimization. Journal of Applied Optics. 2021, 42(5): 859-866 https://doi.org/10.5768/JAO202142.0502006

基金

陕西省自然科学基础研究计划(2020ZDLGY15-07;2020JM-515); 陕西省重点研发计划(2021GY-338)

参考文献

徐诚, 王鑫鑫, 段世红, 等. 基于误差椭圆重采样的粒子滤波跟踪算法[J]. 仪器仪表学报,2020,41(12):76-84.
陈世明, 肖娟, 李海英, 等. 基于引力场的粒子滤波算法[J]. 控制与决策,2017,32(4):709-714.
韩锟, 张赫. 基于果蝇优化算法改进的粒子滤波及其在目标跟踪中的应用[J]. 湖南大学学报 (自然科学版),2018,45(10):130-138.
陈志敏, 田梦楚, 吴盘龙. 基于蝙蝠算法的粒子滤波法研究[J]. 物理学报,2017,66(5):47-56.
朱震曙, 蒋长辉, 薄煜明, 等. 磷虾群优化的改进粒子滤波算法[J]. 哈尔滨工业大学学报,2020,52(2):186-192.
李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用,2020,56(22):1-12.
徐建中, 晏福. 改进鲸鱼优化算法在电力负荷调度中的应用[J]. 运筹与管理,2020,29(9):149-159.
王生武, 陈红梅. 基于粗糙集和改进鲸鱼优化算法的特征选择方法[J]. 计算机
XU Y, XU K, J. WAN J, et al. Research on particle filter tracking method based on Kalman filter[C]//2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, China.US: IEEE, 2018: 1564-1568.
DEVARAJAN J P, ROBERT T P. Swarm intelligent data aggregation in wireless sensor network[J]. International Journal of Swarm Intelligence Research (IJSIR),2020,11(2):1-18.
HUI Z, LIFEN W, YUAN R, et al. An improved particle filter based on UKF and weight optimization[C]//2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China. US: IEEE, 2020: 80-83.
XU Cheng, WANG Xinxin, DUAN Shihong, et al. Particle filter tracking algorithm based on error ellipse resampling[J]. Chinese Journal of Scientific Instrument,2020,41(12):76-84.
CHEN Shiming, XIAO Juan, LI Haiying, et al. Particle filtering algorithm based on gravitational field[J]. Control and Decision,2017,32(4):709-714.
HAN Kun, ZHANG

10

Accesses

0

Citation

Detail

段落导航
相关文章

/