基于长波红外探测器的消热差轻量化光学系统设计

王小波;王曦;刘广康;夏树策;付明亮;郝新建;曹乾坤

应用光学 ›› 2021, Vol. 42 ›› Issue (3) : 429-435.

应用光学 ›› 2021, Vol. 42 ›› Issue (3) : 429-435. DOI: 10.5768/JAO202142.0301009

基于长波红外探测器的消热差轻量化光学系统设计

  • 王小波1, 王曦1, 刘广康1, 夏树策1, 付明亮1, 郝新建1, 曹乾坤1
作者信息 +

Design of athermal and lightweight optical system based on long-wave infrared detector

  • WANG Xiaobo1, WANG Xi1, LIU Guangkang1, XIA Shuce1, FU Mingliang1, HAO Xinjian1, CAO Qiankun1
Author information +
文章历史 +

摘要

利用硫系玻璃与二元衍射面设计一款基于12 μm非制冷长波红外探测器(1 024×768 pixel)的红外消热差系统。该系统由3片玻璃构成,焦距为75 mm,F数为1,系统总长97 mm,系统总质量203 g。利用ZEMAX进行仿真分析,仿真结果表明:在−40 ℃~50 ℃温度范围内,系统奈奎斯特频率(42 lp/mm)处的MTF 均大于0.37,接近衍射极限;在−70 ℃~70 ℃温度状态下系统奈奎斯特频率(42 lp/mm)处的MTF也可以满足使用要求。该系统具有相对孔径大,全视场像质优良,结构轻量化,工艺性良好等特点。

Abstract

Using chalcogenide glass and binary diffraction surface, an infrared athermalization system based on the uncooled long-wave infrared detector (1 024×768 pixel) was designed. The system was composed of 3 pieces of glass, and the system had a focal length of 75 mm, an F −number of 1, a total length of 97 mm, and a total weight of 203 g. The simulation analysis using ZEMAX shows that, within a temperature range of −40℃~50℃, the modulation transfer function(MTF)value at the Nyquist frequency (42 lp/mm) of the system is greater than 0.37, which is close to the diffraction limit; between −70℃ and 70℃, the MTF at the system Nyquist frequency (42 lp/mm) under temperature can also meet the requirements. The system has the characteristics of large relative aperture, excellent full-field image quality, lightweight structure, and good manufacturability.

关键词

轻量化结构 / 二元衍射面 / 消热差 / 硫系玻璃 / 长波红外系统

Key words

lightweight structure / long-wave infrared system / athermalization / chalcogenide glass / binary diffraction surface

引用本文

导出引用
王小波, 王曦, 刘广康, 夏树策, 付明亮, 郝新建, 曹乾坤. 基于长波红外探测器的消热差轻量化光学系统设计. 应用光学. 2021, 42(3): 429-435 https://doi.org/10.5768/JAO202142.0301009
WANG Xiaobo, WANG Xi, LIU Guangkang, XIA Shuce, FU Mingliang, HAO Xinjian, CAO Qiankun. Design of athermal and lightweight optical system based on long-wave infrared detector. Journal of Applied Optics. 2021, 42(3): 429-435 https://doi.org/10.5768/JAO202142.0301009

基金

国防科技创新小组增强微光瞄准镜 (远距型)项目(20-163-00-kx-001-003-02)

参考文献

李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 杭州: 浙江大学出版社, 2014.
吴海清, 曾宪宇, 王朋. 微型长波红外无热化光学系统设计[J]. 红外,2019,40(3):1-5.
张发平, 张华卫. 基于二元衍射面的长波无热化光学系统设计[J]. 红外技术,2020,42(1):25-29.
陈潇. 大面阵长波红外光学无热化镜头的设计[J]. 红外技术,2018,40(11):1061-1064.
吴海清, 田海霞, 崔莉. 大视场、大相对孔径长波红外机械无热化光学系统设计[J]. 红外,2015,36(8):1-5.
李林, 黄一帆, 王涌天. 现代光学设计方法[M]. 北京: 北京理工大学出版社, 2018.
张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008.
米士隆, 牟达, 牟蒙. 紧凑型长波红外光学系统无热化设计[J]. 红外与激光工程,2015,44(10):2032-2036.
白瑜, 廖志远, 李华, 等. 硫系玻璃在现代红外热成像系统中的应用[J]. 中国光学,2014,7(3):449-455.
张婉怡. 红外折衍混
LI Xiaotong, CEN Zhaofeng. Geometrical optics, aberrations and optical design[M]. Hangzhou: Zhejiang University Press, 2014.
WU Haiqing, ZENG Xianyu, WANG Peng. Design of miniature long-wave infrared optical system with optical passive athermalization[J]. Infrared,2019,40(3):1-5.
ZHANG Faping, ZHANG Huawei. Design of long-wave athermal optical system based on binary diffraction surface[J]. Infrared Technology,2020,42(1):25-29.
CHEN Xiao. Design of long-wavelength infrared athermalization lens for large-array detector[J]. Infrared Technology,2018,40(11):1061-1064.
WU haiqing, TIAN Haixia, CUI Li. Design of mechanically athermalized longwave infrared optical system with wide field of view and large relative aperture[J]. Infrared,2015,36(8):1-5.
LI Lin, HUANG Yifan, WANG Yongtian. Modern optical design method[M]. Beijing: Beijing Institute of Technology Press, 2018.
ZHANG Yimo. Applied optics[M]. Beijing: Publishing House of Electronics Industry, 2008.
MI Shilong, MU Da, MU Meng. Athe

Accesses

Citation

Detail

段落导航
相关文章

/