利用硫系玻璃与二元衍射面设计一款基于12 μm非制冷长波红外探测器(1 024×768 pixel)的红外消热差系统。该系统由3片玻璃构成,焦距为75 mm,F数为1,系统总长97 mm,系统总质量203 g。利用ZEMAX进行仿真分析,仿真结果表明:在−40 ℃~50 ℃温度范围内,系统奈奎斯特频率(42 lp/mm)处的MTF 均大于0.37,接近衍射极限;在−70 ℃~70 ℃温度状态下系统奈奎斯特频率(42 lp/mm)处的MTF也可以满足使用要求。该系统具有相对孔径大,全视场像质优良,结构轻量化,工艺性良好等特点。
Abstract
Using chalcogenide glass and binary diffraction surface, an infrared athermalization system based on the uncooled long-wave infrared detector (1 024×768 pixel) was designed. The system was composed of 3 pieces of glass, and the system had a focal length of 75 mm, an F −number of 1, a total length of 97 mm, and a total weight of 203 g. The simulation analysis using ZEMAX shows that, within a temperature range of −40℃~50℃, the modulation transfer function(MTF)value at the Nyquist frequency (42 lp/mm) of the system is greater than 0.37, which is close to the diffraction limit; between −70℃ and 70℃, the MTF at the system Nyquist frequency (42 lp/mm) under temperature can also meet the requirements. The system has the characteristics of large relative aperture, excellent full-field image quality, lightweight structure, and good manufacturability.
关键词
轻量化结构 /
二元衍射面 /
消热差 /
硫系玻璃 /
长波红外系统
{{custom_keyword}} /
Key words
lightweight structure /
long-wave infrared system /
athermalization /
chalcogenide glass /
binary diffraction surface
{{custom_keyword}} /
基金
国防科技创新小组增强微光瞄准镜 (远距型)项目(20-163-00-kx-001-003-02)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 杭州: 浙江大学出版社, 2014.
吴海清, 曾宪宇, 王朋. 微型长波红外无热化光学系统设计[J]. 红外,2019,40(3):1-5.
张发平, 张华卫. 基于二元衍射面的长波无热化光学系统设计[J]. 红外技术,2020,42(1):25-29.
陈潇. 大面阵长波红外光学无热化镜头的设计[J]. 红外技术,2018,40(11):1061-1064.
吴海清, 田海霞, 崔莉. 大视场、大相对孔径长波红外机械无热化光学系统设计[J]. 红外,2015,36(8):1-5.
李林, 黄一帆, 王涌天. 现代光学设计方法[M]. 北京: 北京理工大学出版社, 2018.
张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008.
米士隆, 牟达, 牟蒙. 紧凑型长波红外光学系统无热化设计[J]. 红外与激光工程,2015,44(10):2032-2036.
白瑜, 廖志远, 李华, 等. 硫系玻璃在现代红外热成像系统中的应用[J]. 中国光学,2014,7(3):449-455.
张婉怡. 红外折衍混
LI Xiaotong, CEN Zhaofeng. Geometrical optics, aberrations and optical design[M]. Hangzhou: Zhejiang University Press, 2014.
WU Haiqing, ZENG Xianyu, WANG Peng. Design of miniature long-wave infrared optical system with optical passive athermalization[J]. Infrared,2019,40(3):1-5.
ZHANG Faping, ZHANG Huawei. Design of long-wave athermal optical system based on binary diffraction surface[J]. Infrared Technology,2020,42(1):25-29.
CHEN Xiao. Design of long-wavelength infrared athermalization lens for large-array detector[J]. Infrared Technology,2018,40(11):1061-1064.
WU haiqing, TIAN Haixia, CUI Li. Design of mechanically athermalized longwave infrared optical system with wide field of view and large relative aperture[J]. Infrared,2015,36(8):1-5.
LI Lin, HUANG Yifan, WANG Yongtian. Modern optical design method[M]. Beijing: Beijing Institute of Technology Press, 2018.
ZHANG Yimo. Applied optics[M]. Beijing: Publishing House of Electronics Industry, 2008.
MI Shilong, MU Da, MU Meng. Athe
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}