一种基于参数标定的投影条纹周期简易校正方法

赵婷婷;白福忠;徐永祥;高晓娟

应用光学 ›› 2021, Vol. 42 ›› Issue (1) : 119-124.

应用光学 ›› 2021, Vol. 42 ›› Issue (1) : 119-124. DOI: 10.5768/JAO202142.0103004

一种基于参数标定的投影条纹周期简易校正方法

  • 赵婷婷,白福忠,徐永祥,高晓娟
作者信息 +

Simple correction method for projection fringe period based on parameter calibration

  • ZHAO Tingting,BAI Fuzhong,XU Yongxiang,GAO Xiaojuan
Author information +
文章历史 +

摘要

基于三角测量原理的条纹投影轮廓测量系统中,倾斜投影到参考平面上的条纹将产生周期展宽现象,引起相位失真甚至影响测量精度。论文以条纹位置为控制变量推导出条纹周期校正的线性数学模型,通过简便的标定获得模型参数,由此反算出新的待投影条纹,并在参考平面上获得周期分布的投影条纹。实验结果表明校正后的条纹周期变化范围在±0.1像素内,并且该方法能够获得更为精确的三维轮廓测量结果。

Abstract

In the fringe projection profilometry system based on triangulation principle, the fringe projected on the reference plane always produces the period broaden phenomenon, which can cause phase distortion and even affect the measuring accuracy. The fringe position was taken as the control variable to derive the linear mathematical model of fringe period correction. The model parameters were obtained with a simple and convenient calibration process. Then the new projected fringe was calculated according to the correction model, and the periodic distribution fringe was obtained on the reference plane. The experimental results show that the varying range of the fringe period after correction is within ±0.1 pixel, and this method can obtain the more accurate 3D profile measurement results.

关键词

傅里叶变换轮廓术 / 条纹投影 / 模型参数标定 / 条纹周期校正 / 光学三维成像

Key words

optical three-dimensional imaging / Fourier transform profilometry / model parameter calibration / fringe period correction / fringe projection

引用本文

导出引用
赵婷婷, 白福忠, 徐永祥, 高晓娟. 一种基于参数标定的投影条纹周期简易校正方法. 应用光学. 2021, 42(1): 119-124 https://doi.org/10.5768/JAO202142.0103004
ZHAO Tingting, BAI Fuzhong, XU Yongxiang, GAO Xiaojuan. Simple correction method for projection fringe period based on parameter calibration. Journal of Applied Optics. 2021, 42(1): 119-124 https://doi.org/10.5768/JAO202142.0103004

基金

国家自然科学基金(51765054、11902277);内蒙古自治区自然科学基金(2020LH06002);内蒙古工业大学科学研究项目(X201703)资助项目

参考文献

肖焱山, 曹益平, 武迎春. 条纹投影轮廓术中新的相位高度映射算法[J]. 中国激光,2011,38(12):193-199.
吴浩, 徐向荣, 许四祥. 基于频域纹理消除的结构性纹理缺陷检测方法[J]. 应用光学,2020,41(4):876-880.
朱勇建, 黄振, 马俊飞, 等. 光栅投影三维测量系统标定技术研究[J]. 应用光学,2020,41(5):938-946.
虞梓豪, 刘瑾, 杨海马, 等. 多频光栅物体高精度廓形三维测量及重建研究[J]. 应用光学,2020,41(3):580-585.
刘路, 潘艳娟, 奚冬冬, 等. 相位编码条纹投影轮廓术的相位展开误差校正方法[J]. 应用光学,2020,41(5):978-983.
边心田, 程菊, 左芬, 等. 基于光栅预校正的三维面形测量方法[J]. 激光与光电子学进展,2017,54:011202.
李岩, 麻珂, 张启灿. 傅里叶变换轮廓术中相位失真的预矫正方法[J]. 光学与光电技术,2012,10(1):22-27.
KUO C F J, WU H C. A homography fringe eneration method of fringe projection profilometry technolngy[J]. Optics & Lasers in Engineering,2014,56:28-34.
YU Jin, GAO Nan, ZHANG Zonghua, et al. High sensitivity fringe projection profilometry combining optimal fringe frequency and optimal fringe direction[J]. Optics and Lasers in Engineering,2020,129:106068.
XIAO Yanshan, CAO Yiping, WU Yingchun. A new phase-to-height mapping algorithm in fringe projection profilometry[J]. Chinese Journal of Lasers,2011,38(12):193-199.
WU Hao, XU Xiangrong, XU Sixiang. Structural texture defects detection method based on frequency domain texture elimination[J]. Journal of Applied Optics,2020,41(4):876-880.
QUAN C, TAY C J, HUANG Y H. 3-D deformation measurement using fringe projection and digital image correlation[J]. Optik,2004,115(4):164-168.
ZHU Yongjian, HUANG Zhen, MA Junfei, et al. Study on calibration method of grating projection 3D measuring system[J]. Journal of Applied Optics,2020,41(5):938-946.

18

Accesses

0

Citation

Detail

段落导航
相关文章

/