基于嵌入式GPU的红外弱小目标检测算法

范鹏程;张卫国;刘万刚;张卫;黄维东;刘国栋;徐晓枫

应用光学 ›› 2020, Vol. 41 ›› Issue (5) : 1089-1095.

应用光学 ›› 2020, Vol. 41 ›› Issue (5) : 1089-1095. DOI: 10.5768/JAO202041.0506004

基于嵌入式GPU的红外弱小目标检测算法

  • 范鹏程1, 张卫国1, 刘万刚1, 张卫1, 黄维东1, 刘国栋1, 徐晓枫1
作者信息 +

Infrared weak small target detection algorithm based on embedded GPU

  • FAN Pengcheng1, ZHANG Weiguo1, LIU Wangang1, ZHANG Wei1, HUANG Weidong1, LIU Guodong1, XU Xiaofeng1
Author information +
文章历史 +

摘要

红外弱小目标的目标像素少,目标对比度低,成像帧率高,图像数据量大,检测实时性强。针对红外弱小目标检测算法适合于GPU并行计算的特点,对其在嵌入式GPU平台Jetson TX2上进行了并行优化实现。在检测算法设计、内存访问、调试优化3个方面进行了优化设计。实验结果表明,对640×480像素分辨率的红外视频,并行优化后的目标检测算法能够在10 ms内完成计算,满足实时处理需求。

Abstract

The infrared weak small targets have few target pixels, low target contrast, high imaging frame rate, large amount of image data, and strong real-time detection. Aiming at the characteristic that the infrared weak small targets detection algorithm was suitable for the GPU parallel computing, the parallel optimization was implemented on the Jetson TX2 of the embedded GPU platform, and the optimized design was mainly reflected in the following three aspects: detection algorithm design, memory access, and debugging optimization. The experimental results show that for the infrared videos with a resolution of 640×480 pixels, the target detection algorithm after parallel optimization can complete the calculation in 10 ms, which meets the requirements of real-time processing.

关键词

零均值高斯核 / GPU / 红外弱小目标检测

Key words

infrared weak small target detection / GPU / zero-mean Gaussian kernel

引用本文

导出引用
范鹏程, 张卫国, 刘万刚, 张卫, 黄维东, 刘国栋, 徐晓枫. 基于嵌入式GPU的红外弱小目标检测算法. 应用光学. 2020, 41(5): 1089-1095 https://doi.org/10.5768/JAO202041.0506004
FAN Pengcheng, ZHANG Weiguo, LIU Wangang, ZHANG Wei, HUANG Weidong, LIU Guodong, XU Xiaofeng. Infrared weak small target detection algorithm based on embedded GPU. Journal of Applied Optics. 2020, 41(5): 1089-1095 https://doi.org/10.5768/JAO202041.0506004

参考文献

王力民, 张蕊, 林一楠, 等. 红外探测技术在军事上的应用[J]. 红外与激光工程,2008,37(S2):570-574.
王东, 王敏. 基于多滤波算法融合的红外小目标检测[J]. 应用光学,2017,38(1):106-113.
张刚, 马震环, 雷涛, 等. 基于嵌入式GPU的运动目标分割算法并行优化[J]. 应用光学,2019,40(6):1067-1076.
杨威, 付耀文, 潘晓刚, 等. 弱目标检测前跟踪技术研究综述[J]. 电子学报,2014,42(9):1786-1793.
侯旺, 孙晓亮, 尚洋, 等. 红外弱小目标检测技术研究现状与发展趋势[J]. 红外技术,2015,37(1):1-10.
韩金辉. 基于人类视觉特性的复杂背景红外小目标检测研究[D]. 武汉: 华中科技大学, 2016.
任向阳, 王杰, 马天磊, 等. 红外弱小目标检测技术综述[J]. 郑州大学学报(理学版),2020,52(2):1-21.
赵高鹏, 李磊, 王建宇. 基于结构张量分析的弱小目标单帧检测[J]. 光子学报,2019,48(1):141-151.
王好贤, 董衡, 周志权. 红外
WANG Limin, ZHANG Rui, LIN Yinan, et al. Application in the military of the IR detection technology[J]. Infrared and Laser Engineering,2008,37(S2):570-574.
WANG Dong, WANG Min. Detection of infrared small target based on fusion of muliti-filters[J]. Journal of Applied Optics,2017,38(1):106-113.
ZHANG Gang, MA Zhenhuan, LEI Tao, et al. Embedded GPU‐based parallel optimization for moving objects segmentation algorithm[J]. Journal of Applied Optics,2019,40(6):1067-1076.
YANG Wei, FU Yaowen, PAN Xiaogang, et al. Track-before-detect technique for dim targets: an overview[J]. Acta Electronica Sinica,2014,42(9):1786-1793.
HOU Wang, SUN Xiaoliang, SHANG Yang, et al. Present state and perspectives of small infrared targets detection technology[J]. Infrared Technology,2015,37(1):1-10.
HAN Jinhui. Infrared small target detection under complex background based on human visual system[D]. Wuhan: Huazhong University of Science & Technology, 2016.
REN Xiangyang, WANG Jie, MA Tianlei, et al. Revi

8

Accesses

0

Citation

Detail

段落导航
相关文章

/