共轴三反光学系统是空间光学遥感器常用的设计形式,以“高分一号”遥感卫星高分辨率相机装调为例,对共轴三反系统计算机辅助装调技术进行了研究。提出以主镜光轴为装调基准,通过调整三镜控制系统视场和调整次镜控制系统像差的装调方法,分析了次镜和三镜的失调量与Zernike系数变化关系,由光学设计软件求得系统灵敏度矩阵,用于指导系统装调工作,提高了装调精度,缩短了装调周期。测试结果表明:光学系统各视场Zernike系数优于0.05λ,系统波相差RMS值优于0.06λ,系统通过在轨成像测试,图像清晰,层次丰富。
Abstract
Coaxial three-mirror optical system is a popular optical system design form in space optical remote sensor. Taking the alignment of high-resolution camera of the GF-1 sensing satellite as an example, the computer-aided alignment technology of coaxial three-mirror optical system was researched. The primary mirror optical axis was set as the benchmark. By adjusting the alignment methods of three-mirror control system field of view and secondary mirror control system aberration, the changes in the relationship between the misalignment rate of secondary mirror and three-mirror and Zernike coefficient were analyzed. The system sensitivity matrix was obtained by the optical design software to guide the system alignment, which improved the accuracy of alignment and shortened the period of alignment. Test results show that the Zernike coefficient of each field of view in optical system is better than 0.05λ, and the RMS value of system wave aberration is better than 0.06 λ. The system passes the on-orbit imaging test with clear and multilayer images.
关键词
Zernike系数 /
共轴三反系统 /
遥感卫星 /
计算机辅助装调
{{custom_keyword}} /
Key words
computer-aided alignment /
coaxial three-mirror optical system /
Zernike coefficient /
remote sensing satellite
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
刘波, 丁亚林, 贾继强, 等. R-C光学系统的计算机辅助装调[J]. 红外与激光工程,2016,45(3):0318001-1-6.
张向明, 姜峰, 孔龙阳, 等. 卡塞格林系统光学装调技术研究[J]. 应用光学,2015,36(4):526-530.
栗孟娟, 廖志波, 王春雨. 小口径高精度折射式光学系统装调公差的分析与控制[J]. 应用光学,2015,36(2):277-281.
李小燕, 付兴, 王鹏, 等. 非球面光学反射镜的装调方法[J]. 应用光学,2013,34(3):498-502.
金伟其, 王霞, 张其扬, 等. 多光轴一致性检测技术进展及其分析[J]. 红外与激光工程,2010,39(3):526-531.
潘君骅. 光学非球面的设计、加工与检测[M]. 苏州: 苏州大学出版社, 2004.
安连生. 应用光学[M]. 北京: 北京理工大学出版社, 2003: 166-169.
李斌, 陈佳夷, 王海超, 等. 椭球面反射镜的光轴引出方法[J]. 应用光学,2018,39(6):791-795.
宋俊儒, 邢辉, 穆生博, 等. 航空红外相机的装调[J]. 光学精密工程,
LIU Bo, DING Yalin, JIA Jiqiang, et al. Computer aided alignment of R-C optical system[J]. Infrared and Laser Engineering,2016,45(3):0318001-1-6.
ZHANG Xiangming, JIANG Feng, KONG Longyang, et a1. Research on optical alignment technology for Cassegrain system[J]. Journal of Applied Optics,2015,36(4):526-530.
LI Mengjuan, LIAO Zhibo, WANG Chunyu. Analysis and control on assemblage tolerance in small-aperture high-precision refraction optical system[J]. Optics and Precision Engineering,2015,36(2):277-281.
LI Xiaoyan, FU Xing, WANG Peng, et a1. Alignment method of aspheric optical reflector[J]. Journal of Applied Optics,2013,34(3):498-502.
JIN Weiqi, WANG Xia, ZHANG Qiyang, et a1. Technical progress and its analysis in detecting of multi-axes parallelism[J]. Infrared and Laser Engineering,2010,39(3):526-531.
PAN Junhua. The design manufacture and test of the aspherical optical surface[M]. Suzhou: Suzhou University Press, 2004.
AN Liansheng. Applied optics[M]. Beijing: Beijing Institute of
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}