基于PCA和BP神经网络的硝酸盐氮浓度检测方法

陈朋;严宪泽;韩洋洋;吴晨阳;昝昊

应用光学 ›› 2020, Vol. 41 ›› Issue (4) : 761-768.

应用光学 ›› 2020, Vol. 41 ›› Issue (4) : 761-768. DOI: 10.5768/JAO202041.0410002

基于PCA和BP神经网络的硝酸盐氮浓度检测方法

  • 陈朋1, 严宪泽2, 韩洋洋2, 吴晨阳2, 昝昊2
作者信息 +

Nitrate nitrogen concentration detection method based on principal component analysis and BP neural network

  • CHEN Peng1, YAN Xianze2, HAN Yangyang2, WU Chenyang2, ZAN Hao2
Author information +
文章历史 +

摘要

针对紫外分光光度法(UV法)检测混有干扰物质的硝酸盐氮溶液浓度精度不高的问题,提出一种基于主成分分析(principal component analysis,PCA)和BP神经网络的硝酸盐氮浓度检测方法。通过微型光谱仪物质成分检测系统测得硝酸盐氮试剂在196 nm~631 nm波段的吸光度数据,分为测试集和训练集。通过PCA计算训练集,得到主成分。根据BP算法搭建三层人工神经网络。将所得主成分除以8后输入网络展开训练。训练过程中采用留一法交叉验证。用该模型计算训练集和测试集,所得值与真实浓度的平均相对误差分别为2.411 5%和1.553%。实验结果表明,该方法能较好检测出混有干扰物质的硝酸盐氮溶液浓度。

Abstract

Aiming at the problem of inaccurate detection of the nitrate nitrogen solution concentration with interfering substances in ultraviolet spectrophotometry (UV method), a nitrate nitrogen concentration detection method based on principal component analysis (PCA) and BP neural network was proposed. First, the absorbance of the nitrate nitrogen reagent at 196 nm~631 nm was measured by the material composition detection system of the micro-spectrometer, which was divided into test set and training set. Then, the PCA was used to calculate the training set to obtain the principal components. Finally, a three-layer artificial neural network was built based on the BP algorithm. The obtained principal components were divided by 8 and input into the network for training. During the training, the leaving-one method was adopted for cross-validation. This model was used to calculate the training set and test set, the mean relative error between the obtained results and the true concentration is 2.411 5% and 1.553% respectively. The experimental results show that the method can better detect the concentration of the nitrate nitrogen reagent with interfering substances.

关键词

浓度 / 神经网络 / 主成分分析 / 硝酸盐氮 / 光谱分析

Key words

concentration / spectral analysis / nitrate nitrogen / neural network / principal component analysis

引用本文

导出引用
陈朋, 严宪泽, 韩洋洋, 吴晨阳, 昝昊. 基于PCA和BP神经网络的硝酸盐氮浓度检测方法. 应用光学. 2020, 41(4): 761-768 https://doi.org/10.5768/JAO202041.0410002
CHEN Peng, YAN Xianze, HAN Yangyang, WU Chenyang, ZAN Hao. Nitrate nitrogen concentration detection method based on principal component analysis and BP neural network. Journal of Applied Optics. 2020, 41(4): 761-768 https://doi.org/10.5768/JAO202041.0410002

基金

浙江省属高校基本科研业务费专项资金资助(RF-C2019001);浙江省教育厅一般科研项目(GZ18571030014);浙江省重点研发计划(2019C01007)

参考文献

张亚丽, 张依章, 张远, 等. 浑河流域地表水和地下水氮污染特征研究[J]. 中国环境科学,2014,34(1):170-177.
国家环境保护总局. SL84-1994 水质硝酸盐氮的测定紫外分光光度法[S]. 北京: 中国标准出版, 2007.
宋哥, 孙波, 教剑英. 测定土壤硝态氮的紫外分光光度法语其他方法的比较[J]. 土壤学报,2007,44(2):288-293.
杨鹏程. 紫外吸收光谱结合偏最小二乘法海水硝酸盐测量技术研究[D]. 天津: 国家海洋技术中心, 2013.
刘思乡, 范卫华, 郭慧, 等. 机器学习在紫外法测定硝酸盐氮浓度中的应用[J]. 光谱学与光谱分析,2017,37(4):1179-1182.
俞禄, 王雪洁, 明倩, 等. 几种建模方法在光谱水质分析中的应用和比较[C]. 烟台: 中国自动化学会控制理论专业委员会B卷, 2011: 5227-5230.
王雷, 乔晓艳, 张姝, 等. 基于BP神经网络的荧光光谱法农药残留检测[J]. 应用光学,2010,31(3):442-446.
李婵, 万晓霞, 谢伟
ZHANG Yali, ZHANG Yizhang, ZHANG Yuan, et al. Characteristics of nitrate in surface water and groundwater in the Hun River Basin[J]. China Environmental Science,2014,34(1):170-177.
State Environment Protection Administration.SL84-1994 Water quality-determination of nitrate-nitrogen-ultraviolet spectrophotometry[S]. Beijing: Chinese Standard Publishing, 2007.
SONG Ge, SUN Bo, JIAO Jianying. Comparison between ultraviolet spectrophotometry and other methods in determination of soil Nitrate-N[J]. Acta Pedologica Sinica,2007,44(2):288-293.
YANG Pengcheng. Research on determination of nitrate in seawater based on ultraviolet spectra combined with PLS method[D]. Tianjin: National Ocean Technology Center, 2013.
LIU Sixiang, FAN Weihua, GUO Hui, et al. Application of machine learning in determination of nitrate nitrogen based on ultraviolet spectrophotometry[J]. Spectroscopy and Spectral Analysis,2017,37(4):1179-1182.
YU Lu. WANG Xuejie, MING Qian, et al. Application and comparison of several mo

9

Accesses

0

Citation

Detail

段落导航
相关文章

/