基于组合标准器的显微CT系统测量方法研究

沙桐桐;胡晓东;赵金涛;邹晶

应用光学 ›› 2020, Vol. 41 ›› Issue (4) : 810-815.

应用光学 ›› 2020, Vol. 41 ›› Issue (4) : 810-815. DOI: 10.5768/JAO202041.0409802

基于组合标准器的显微CT系统测量方法研究

  • 沙桐桐1, 胡晓东1, 赵金涛1, 邹晶1
作者信息 +

Measurement method research for Micro-CT system based on combined calibrator

  • SHA Tongtong1, HU Xiaodong1, ZHAO Jintao1, ZOU Jing1
Author information +
文章历史 +

摘要

为保证显微CT系统测量精度,采用标准器与样品共同测量的方式设计了可用于共同测量的组合标准器,提出显微CT系统测量过程中修正比例误差与阈值误差的方法。在不改变显微CT系统扫描参数的情况下,对航空航天常用的轻质材料聚四氟乙烯样品进行独立测量,并与基于组合标准器的测量进行对比实验。结果表明,基于组合标准器的显微CT系统测量方法较样品独立测量方法有效减小测量误差1 μm~4 μm,鲁棒性好。

Abstract

In order to ensure the measurement accuracy of the Micro-Computed Tomography (Micro-CT) system, a combined measurement mode of the calibrator and the sample was adapted to design the combined calibrator which can be used for the combined measurement, and a method to correct the proportional error and the threshold error in the measurement process of the Micro-CT system was proposed. Without changing the scanning parameters of the Micro-CT system, the samples of polytetrafluoroethylene, a light material commonly used in aerospace, were measured independently and compared with the measurements based on the combined calibrator. The results show that compared with the sample independent measurement method, the proposed method can effectively reduce the measurement error of 1 μm~4 μm and has better robustness.

关键词

组合标准器 / 三维重建 / 测量精度 / 显微CT

Key words

Micro-CT / measurement accuracy / combined calibrator / 3D reconstruction

引用本文

导出引用
沙桐桐, 胡晓东, 赵金涛, 邹晶. 基于组合标准器的显微CT系统测量方法研究. 应用光学. 2020, 41(4): 810-815 https://doi.org/10.5768/JAO202041.0409802
SHA Tongtong, HU Xiaodong, ZHAO Jintao, ZOU Jing. Measurement method research for Micro-CT system based on combined calibrator. Journal of Applied Optics. 2020, 41(4): 810-815 https://doi.org/10.5768/JAO202041.0409802

基金

国家自然科学基金项目(61771328)

参考文献

陈思, 陈浩, 李敬, 等. 一种工业CT测量精度评估方法[C]//全国射线数字成像与CT新技术研讨会论文集. 绵阳: 中国体视学学会, 2012: 193-201.
陈思文. 测量型显微CT系统的定值方法[D]. 天津: 天津大学, 2016.
张建隆, 潘鑫, 贺磊, 等. 全视角高精度三维测量仪光学系统误差分析研究[J]. 应用光学,2018,39(3):392-399.
邱磊, 钱斌, 伏燕军, 等. 基于正弦和三角波条纹投影的三维测量方法[J]. 应用光学,2018,39(4):522-527.
国家质量监督检验检疫总局. GB/T 34874.3-2017 产品几何技术规范(GPS): X射线三维尺寸测量机——第3部分: 验收检测和复检检测[S]. 北京: 中国标准出版社, 2017: 14-15.
KIEKENS K, WELKENHUYZEN F, TAN Y, et al. A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography(CT) metrology[J]. Measurement Science and Technology,2011,22(11):115502.
ZHAO J T, HU X D, ZOU J, et al. Method for correction of rotation errors in micro-CT system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2016,816:149-159.
JIMéNEZ R, ONTIVEROS S, CARMIGNATO S, et al. Correction strategies for the use of a conventional micro-CT cone beam machine for metrology applications[J]. Procedia CIRP,2012,2:34-37.
KRUTH J P, BARTSCHER M, CARMIGNATO S, et al. Computed tomography for dimensional metrology[J]. CIRP Annals,2011,60(2):821-842.
BARTSCHER M, HILPERT U, GOEBBELS J, et al. Enhancement and proof of accuracy of industrial computed tomography(CT) measurements[J]. CIRP Annals,2007,56(1):495-498.
HSEIH J. Computed tomography - principles, design, artifacts and

10

Accesses

0

Citation

Detail

段落导航
相关文章

/