太赫兹作为新的技术手段在物质成分识别、高速通信、生物医学、安检成像和军事国防等领域具有重要的作用。太赫兹技术的各种应用都建立在对太赫兹本身及其与物质相互作用测量的基础上,因此准确的太赫兹参数测量及相关量值溯源是太赫兹应用的技术支撑和保障。介绍中国计量科学研究院在太赫兹辐射参数计量标准研究中形成的测量技术和溯源方法、研制的测量仪器和测量装置、制定的计量校准法规和建立的计量标准装置,对太赫兹辐射时域、频域、空域和强度等参数给出了量值溯源传递图并进行了测量不确定度分析。提出的太赫兹计量方法和标准装置可保障太赫兹技术研究和应用中的量值可靠,也可为其他太赫兹参数的测量提供参考。
Abstract
Terahertz, as a novel technology, has been widely used in the field of material component recognition, high-speed communication, biomedicine, security imaging and military defense. Various applications of terahertz technology are based on the measurement of terahertz itself and its interaction with substances, therefore the accurate terahertz parameter measurement and relevant magnitude tracing are the technical support and guarantee of terahertz application. The measurement technology and tracing method, developed measuring instruments and devices, and established metrology calibration regulations, and metrology standard device formed in the terahertz radiation parameters metrology standard research by National Institute of Metrology were introduced. The magnitude tracing transitive graphs of terahertz radiation time domain, frequency domain, space domain and intensity were presented, and the measurement uncertainty analysis was carried out. The proposed terahertz metrology method and standard devices can guarantee the reliable magnitude in terahertz technology research and application, and can also provide a reference for other terahertz parameters measurement.
关键词
太赫兹技术 /
测量标准 /
太赫兹计量
{{custom_keyword}} /
Key words
terahertz metrology /
terahertz technology /
measurement standard
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
邓玉强, 邢岐荣, 郎利影, 等. THz波的小波变换频谱分析[J]. 物理学报,2005,54(11):5224-5227.
邓玉强, 郎利影, 邢岐荣, 等. Gabor小波分析太赫兹波时间-频率特性的研究[J]. 物理学报,2008,57(12):7747-7752.
中华人民共和国国家质量监督检验检疫总局. JJF 1603-2016 (0.1~2.5)THz太赫兹光谱仪校准规范[S]. 北京: 中国标准出版社, 2016.
尹演子, 李在清. 光谱规则透射比标准装置的建立[J]. 计量学报,1994,15(4):249-254.
中华人民共和国国家质量监督检验检疫总局. JJF 1600-2016 辐射型太赫兹功率计校准规范[S]. 北京: 中国标准出版社, 2016.
邓玉强, 孙青, 于靖, 等. 太赫兹辐射功率计量研究进展与国际比对[J]. 中国激光,2017,44(3):270-278.
孟莹, 邓玉强, 郭树恒, 等. 基于频率梳的太赫兹辐射功率密度测量[J]. 红外与毫米波学报,2019,38(2):254-261.
孙青, 杨奕, 孟飞, 等. 基于频率梳的太赫兹频率精密测
SIRTORI C. Bridge for the terahertz gap[J]. Nature,2002,417(6855):132-133.
TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics,2007,1(2):97-105.
SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):910-928.
KLEINE-OSTMANN T, SCHRADER T, BIELER M, et al. THz metrology[J]. Frequenz,2008,62(5/6):137-148.
SMITH P R, AUSTON D H, NUSS M C. Subpicosecond photoconducting dipole antennas[J]. IEEE Journal of Quantum Electronics,1988,24(2):255-260.
XIE X, DAI J M, ZHANG X C. Coherent control of THz wave generation in ambient air[J]. Physical Review Letters,2006,96(7):075005.
DAI J M, XIE X, ZHANG X C. Detection of broadband terahertz waves with a laser-induced plasma in gases[J]. Physical Review Letters,2006,97(10):103903.
DENG Y Q, SUN Q, YU J. On-line calibration for linear time-base error correction of terahertz spectrometers with echo pulses[J]. Metrologia,2014,51(1):18-24.
DENG Y Q, LI J, SUN Q. Traceable measurements of
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}