真空条件下低温红外辐射测量技术研究

邱超;翟思婷;吴柯萱;孙红胜;王加朋;张玉国;杨旺林;杜继东;郭亚玭

应用光学 ›› 2020, Vol. 41 ›› Issue (4) : 730-736.

应用光学 ›› 2020, Vol. 41 ›› Issue (4) : 730-736. DOI: 10.5768/JAO202041.0406002

真空条件下低温红外辐射测量技术研究

  • 邱超1, 翟思婷1, 吴柯萱1, 孙红胜1, 王加朋1, 张玉国1, 杨旺林1, 杜继东1, 郭亚玭1
作者信息 +

Research on low-temperature infrared radiation measurement technology under vacuum condition

  • QIU Chao1, ZHAI Siting1, WU Kexuan1, SUN Hongsheng1, WANG Jiapeng1, ZHANG Yuguo1, YANG Wanglin1, DU Jidong1, GUO Yapin1
Author information +
文章历史 +

摘要

针对红外载荷在轨服役期间低温目标的红外辐射探测需求,提出一种真空条件下的低温红外辐射测量方案,并研制了测量装置。测量装置主要由低温红外光学系统、低温机械结构、低温红外探测系统及微弱信号处理系统构成。低温红外辐射经过光学系统会聚到探测器像面,锁相放大器利用相干检测技术将目标信号提取,完成低温红外辐射的测量。测量装置研制完成后,在真空仓内使用标准黑体辐射源,在198 K~423 K温度范围内进行了低温红外辐射定标试验,取得了有效的试验数据,测量不确定度在5%以内。该文提出的真空条件下低温红外辐射测量技术可为在轨空间红外载荷低温红外目标探测设计提供重要数据支撑。

Abstract

According to the requirement of infrared radiation detection of low-temperature targets during the period of infrared payload serving in orbit, a low-temperature infrared radiation measurement scheme under vacuum condition was proposed, and the measuring device was developed. The measuring device was mainly composed of a low-temperature infrared optical system, a low-temperature mechanical structure, a low-temperature infrared detection system and a weak signal processing system. The low-temperature infrared radiation was gathered to the detector image plane through the optical system, the lock-in amplifier used coherent detection technology to extract the target signal, and the low-temperature infrared radiation was measured. After the development of the measuring device completed, the standard black body radiation source was used in the vacuum chamber to perform a low-temperature infrared radiation calibration test in the temperature range of 198 K to 423 K, which obtained the effective test data and the measurement uncertainty was within 5%. The proposed low-temperature infrared radiation measurement technology under vacuum condition can provide important data support for the design of low-temperature infrared target detection of infrared payload in orbital space.

关键词

辐射测量 / 真空条件 / 低温红外目标探测 / 低温红外辐射

Key words

low-temperature infrared radiation / low-temperature infrared target detection / radiation measurement / vacuum condition

引用本文

导出引用
邱超, 翟思婷, 吴柯萱, 孙红胜, 王加朋, 张玉国, 杨旺林, 杜继东, 郭亚玭. 真空条件下低温红外辐射测量技术研究. 应用光学. 2020, 41(4): 730-736 https://doi.org/10.5768/JAO202041.0406002
QIU Chao, ZHAI Siting, WU Kexuan, SUN Hongsheng, WANG Jiapeng, ZHANG Yuguo, YANG Wanglin, DU Jidong, GUO Yapin. Research on low-temperature infrared radiation measurement technology under vacuum condition. Journal of Applied Optics. 2020, 41(4): 730-736 https://doi.org/10.5768/JAO202041.0406002

基金

国防科技工业局技术基础项目(JSJL2017204C005)

参考文献

马宁, 刘奕, 李江勇, 等. 红外低温光学关键技术研究综述[J]. 激光与红外,2017,47(10):1195-1200.
蒋山平, 杨林华. 空间太阳望远镜热光学环境试验技术[J]. 航天器环境工程,2008,25(2):173-176.
陈永和. 低温光学设计中的镜面变形处理[J]. 科学技术与工程,2009,9(8):2157-2161.
王学新, 焦明印. 红外光学系统无热化设计方法的研究[J]. 应用光学,2009,30(1):129-133.
屈金祥, 陆燕. 平面光学镜低温温度场和热变形分析方法[J]. 低温与超导,2008,36(9):71-75.
周超. 低温红外系统光机结构设计[J]. 红外与激光工程,2013,42(8):2092-2096.
王仕元, 李强, 朱晓兵, 等. 微弱信号检测系统设计[J]. 电子科技,2013,26(11):104-106.
焦斌亮, 李素静. 锁相放大器及其相关检测的仿真分析[J]. 电子技术,2008,45(1):110-112.
康跃腾, 胡晓娅, 汪秉文. 基于锁相放大原理的微弱信号检测电路[J]. 电子设计工程,2013,21(6):162-164.
TIMOTHY M J, ADRIAAN C C, SOLOMON I, et al. Infrared transfer radiometer for broadband and spectral calibration of space chambers[J]. SPIE, 2010(7663): 76630J.
TIMOTHY M J, ADRIAAN C C, STEVEN R, et al. NIST-BMDO transfer radiometer (BXR)[J]. SPIE, 2000(4028): 404-410.
BLAKE G C, DERON K S, ANDREW L S, et al. Cryogenic infrared radiometer for transferal of NIST radiometric standards[J]. SPIE, 2001(4450): 168-180.
DONALD G P, ROY W H, DOUGLAS K M, et al. AEOS radiometer system: a multichannel imaging radiometer[J]. SPIE,1999(3701): 206-213.
MICHAEL L V, DAVID J W, PAUL D L, et al. Sensor suite for the advanced electro-optical system (AEOS) 3.6-m telescope[C]//Proceedings of SPIE - The International Society for Optical Engineering. USA: SPIE, 1997: 31-39.
TROUSSEL Ph, CORON N. BOLUX: A cryogenic electrical-substitution radiometer as high accuracy primary detector in the 150?11,000 eV range[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detec

18

Accesses

0

Citation

Detail

段落导航
相关文章

/