基于分布反馈式(DFB)光纤激光水听器,针对传统相位生成载波(PGC)解调方案中的不足,提出了一种新型的单路微分相除(PGC-SDD)解调算法。与传统的微分交叉相乘(PGC-DCM)和反正切(PGC-Arctan)解调算法相比,该方法仅需要双通道的1路信号作微分处理,以较少的运算步骤和计算量达到解调信号的目的。PGC-SDD算法能够更有效地应对环境引起的光强扰动和调制深度引起的谐波畸变,使解调结果更接近待测信号。对3种解调算法进行仿真和实验验证,结果表明:采用PGC-DCM解调其信噪比约12.4 dB,PGC-Arctan算法的信噪比约13.9 dB,PGC-SDD算法的信噪比达到了17.5 dB。
Abstract
Based on the optical fiber laser hydrophone of distributed feedback (DFB), a new demodulation algorithm of single differential division (PGC-SDD) was proposed for the deficiency of traditional phase generated carrier (PGC) demodulation scheme. Compared with the demodulation algorithms of traditional differential cross-multiplication (PGC-DCM) and the Arctan, the improved algorithm could reach the demodulation results with reduced amount of operation steps and computation, in which only the signals in one of the two channels needed differential calculation. The PGC-SDD algorithm could effectively suppress the light intensity disturbance caused by environment and the harmonic distortion caused by modulation depth, which made the demodulation results closer to the signal to be tested. The simulation and experimental results show that the signal-to-noise ratio of PGC-SDD algorithm can reach to 17.5 dB, higher than 12.4 dB of PGC-DCM algorithm and 13.9 dB of PGC-Arctan algorithm.
关键词
水听器 /
解调算法 /
光纤激光器 /
光纤传感
{{custom_keyword}} /
Key words
optic fiber sensing /
optical fiber laser /
hydrophone /
demodulation algorithm
{{custom_keyword}} /
基金
深圳市发展改革委战略性新兴产业和未来产业发展专项资金([2017]853号)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
张仁和, 倪明. 光纤水听器的原理与应用[J]. 物理,2004,33(7):503-507.
吴繁. 基于光纤声波探测系统的高灵敏度信号检测方法与实验研究[D]. 成都: 电子科技大学, 2018: 18-30.
罗洪. 拖曳线列阵用光纤水听器研究[D]. 长沙: 国防科学技术大学, 2007.
张文涛, 李芳. 光纤激光水听器研究进展[J]. 集成技术,2015,4(6):1-14.
区坚海. 基于水面声光耦合光纤水听器π/2相位解调技术研究[D]. 杭州: 浙江大学, 2012: 42-50.
唐波, 黄俊斌, 顾宏灿. 低加速度灵敏度的分布反馈式光纤激光水听器研究[J]. 中国激光,2018,45(3):300-307.
王凯. 光纤干涉型水听器PGC信号解调及应用技术研究[D]. 天津: 天津大学, 2010.
孙韦, 于淼, 常天英, 等. 相位生成载波解调方法的研究[J]. 光子学报,2018,47(8):221-228.
朱俊, 王强, 谷小红, 等. 混合干涉型分布式光纤传感器PGC信号解调设计与实验分析[J]. 应用光学,2015,36(4):
ZHANG Renhe, NI Ming. Principle and applications of the fiber optic hydrophone[J]. Physics,2004,33(7):503-507.
GRATTAN K T V, SUN T. Fiber optic sensor technology: an overview[J]. Sensors and Actuators A: Physical,2000,82(1/2/3):40-61.
JAGDISH P S, KRISHNAN B, ALEXANDER P, et al. Optical fiber sensors and their applications[J]. SPIE, 2001, 4417 : 99-106 .
CRANCH G A, NASH P J. Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM[J]. Journal of Lightwave Technology,2001,19(5):687-699.
WU Fan. Highly sensitive signal detection methods and experimental study based on optical fiber acoustic detection system[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 18-30.
LUO Hong. Research on fiber optic hydrophone used for towed line array[D]. Changsha: National University of Defense Technology, 2007.
ZHANG Wentao, LI Fang. Recent progresses in fiber laser hydrophone[J]. Journal of Integration Technology,2015,4(6):1-14.
OU Jianhai. Rese
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}