针对太阳能电池组件中电池片出现隐裂导致整片电池破碎,最终影响整个组件发电量的问题,在对电池组件光致发光(PL)图像待检测区域筛选定位的基础上,提出了一种利用卷积神经网络(CNN)进行电池组件隐裂缺陷检测的方法。首先利用PL成像方法获取电池组件图像,然后对图像进行预处理,基于聚类的方法对待检测目标区域进行筛选定位,最后利用3种不同结构的卷积神经网络模型对电池片进行缺陷检测,并进行准确率对比,使最优识别准确率达到99.25%。实验结果验证了该方法能准确地检测出太阳能电池组件的隐裂缺陷。
Abstract
Aiming at the problem that the cracked cell in the solar cell module eventually causes the whole cell to break and affect the power generation of the whole component, a method for detecting cracked defects of battery components using convolutional neural network network (CNN), is proposed based on the screening and positioning of the photoluminescence (PL) image of the battery component. The basic idea is to obtain the image of the battery component by using the PL detection technology first, then pre-process the image, filter and locate the target area based on the clustering method, and finally use three convolutional neural network models to detect the defect of the battery, and compare the accuracy. A large number of experimental results verify that the above method can accurately detect the cracking defects of solar cell modules.
关键词
卷积神经网络 /
图像识别 /
缺陷检测 /
光致发光
{{custom_keyword}} /
Key words
convolutional neural network /
photoluminescence /
image recognition /
defects detection
{{custom_keyword}} /
基金
国家重点专项资助项目(2018YFC1902400);国家自然科学基金(51874217,51805386);湖北省技术创新专项重大项目(2017ACA180)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
WENHAM S R, GREEN M A, WATT M E, et al. 应用光伏学[M]. 施正荣, 译. 上海: 上海交通大学出版社, 2008: 44-48.
钱晓亮, 张鹤庆, 陈永信, 等. 基于机器视觉的太阳能电池片表面缺陷检测研究现状及展望[J]. 北京工业大学学报,2017,43(1):76-85.
钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测[J]. 仪器仪表学报,2017,38(7):1570-1578.
严婷婷, 张光春, 李果华, 等. 光致发光技术在Si基太阳电池缺陷检测中的应用[J]. 半导体技术,2010,35(5):454-457.
王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能,2014,27(6):517-523.
伍李春, 刘明周, 蒋倩男, 等. 基于人工神经网络的太阳能电池片表面质量检测系统[J]. 合肥工业大学学报: 自然科学版,2017,40(9):1176-1180.
李岳云, 许悦雷, 马时平, 等. 深度卷积神经网络的显著性检测[J]. 中国图象
WENHAM S R, GREEN M A, WATT M E, et al. Applied photovoltaics[M]. SHI Zhengrong, translated. Shanghai: Shanghai Jiaotong University Press, 2008: 44-48.
QIAN Xiaoliang, ZHANG Heqing, CHEN Yongxin, et al. Research development and prospect of solar cells surface defects detection based on machine vision[J]. Journal of Beijing University of Technology,2017,43(1):76-85.
QIAN Xiaoliang, ZHANG Heqing, ZHANG Huanlong, et al. Solar cell surface defect detection based on visual saliency[J]. Chinese Journal of Scientific Instrument,2017,38(7):1570-1578.
YAN Tingting, ZHANG Guangchun, LI Guohua, et al. Application of photoluminescence for the testing of defects in crystalline silicon based solar cells[J]. Semiconductor Technology,2010,35(5):454-457.
DEITSCH S, CHRISTLEIN V, BERGER S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy,2019,185:455-468.
ZHANG Lei, LIANG Peng, ZHU Huishi, et al. Detection of finger interruptions in silico
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}