大视场反射式施密特光学系统设计与检测

董云芬;王波;张盈盈;宫萌;王斌

应用光学 ›› 2020, Vol. 41 ›› Issue (2) : 265-269.

应用光学 ›› 2020, Vol. 41 ›› Issue (2) : 265-269. DOI: 10.5768/JAO202041.0201005

大视场反射式施密特光学系统设计与检测

  • 董云芬1, 王波1, 张盈盈1, 宫萌1, 王斌1
作者信息 +

Optical design and detection for reflective Schmidt system with large field of view

  • DONG Yunfen1, WANG Bo1, ZHANG Yingying1, GONG Meng1, WANG Bin1
Author information +
文章历史 +

摘要

大视场、低成本、高性能天文望远镜是当前研究和开发的热点。基于像差平衡原理,在正入射施密特矫正板基础上推导出斜入射反射式施密特矫正板方程,针对焦距1 700 mm,成像视场角4°,波段为0.4 μm~0.9 μm,F数为4.25的光学系统,求解出施密特矫正板方程,并作为初始结构参数代入Zemax软件进一步优化。设计结果表明,在全视场范围内,该系统在奈奎斯特频率100 lp/mm处的调制传递函数MTF大于0.35,畸变小于2.5%,成像质量达到了衍射极限。优化设计后施密特矫正板与最近球面最大偏差为0.005 mm,采用特制的补偿器结合干涉仪可完成面形高精度检测。该施密特系统的设计为大视场、宽波段天文望远镜的开发提供了参考。

Abstract

The astronomical telescope of large field of view, low-cost and high-performance is the focus of current research and development. According to the aberration balance principle, the oblique incident reflective Schmidt correction plate equation was derived based on the normal incident Schmidt correction plate. For an optical system with the focal length of 1 700 mm, the imaging field angle of 4°, the operating wavelength of 0.4 μm to 0.9 μm, and the F number of 4.25, the Schmidt correction plate equation was solved and further optimized by using ZEMAX software as the initial structural parameter. The design results show that, the modulation transfer function (MTF) of this system is more than 0.35 at the Nyquist frequency of 100 lp/mm in the full field of view, and the distortion is less than 2.5 %, which indicates that the imaging quality is close to the diffraction limit. After the optimized design, the maximum deviation between Schmidt correction plate and near spherical surface is 0.005 mm, and the special compensator can complete the surface shape high-precision detection combined with the interferometer. The design of the Schmidt system can provide references for the development of astronomical telescopes with large field of view and wide spectrum.

关键词

施密特系统 / 大视场 / 望远镜 / 非球面 / 光学检测 / 光学设计

Key words

large field of view / optical design / Schmidt system / telescope / optical detection / aspherics

引用本文

导出引用
董云芬, 王波, 张盈盈, 宫萌, 王斌. 大视场反射式施密特光学系统设计与检测. 应用光学. 2020, 41(2): 265-269 https://doi.org/10.5768/JAO202041.0201005
DONG Yunfen, WANG Bo, ZHANG Yingying, GONG Meng, WANG Bin. Optical design and detection for reflective Schmidt system with large field of view. Journal of Applied Optics. 2020, 41(2): 265-269 https://doi.org/10.5768/JAO202041.0201005

基金

江苏省自然科学基金(BK20181125)

参考文献

李飞, 王克逸. RGB三通道衍射望远镜光学成像系统设计[J]. 应用光学,2019,40(3):369-372.
施建荣. LAMOST望远镜[J]. 科学通报,2016,61(12):1330-1335.
郝沛明, 王正亭, 袁立银, 等. 反射式牛顿-施密特光学系统设计[J]. 光学仪器,2008,30(4):41-45.
雷存栋, 郑列华, 车英. 离轴全反射施密特系统设计[J]. 光子学报,2014,43(11):55-59.
潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004: 101-105.
刘强, 王欣. 大视场大相对孔径斜轴离轴三反望远镜的光学设计[J]. 光子学报,2019,48(3):0322002.
李元, 李艳, 何玉兰, 等. 紧凑型自由曲面离轴三反系统设计[J]. 应用光学,2018,39(6):780-784.
潘宝珠, 程灏波. 基于波像差函数建立大口径施密特校正板方程[J]. 光学学报,2012,32(2):243-247.
孟晓辉, 王永刚, 李文卿, 等. Ф420 mm高次非球面透镜的加工与检测[J]. 光学精密工程,2016,24(12):3068-3075.
K APOOR R C.The First astronomical use of the telescope in india[M]. Singapore: Springer Singapore, 2019.
POGGIANI R. Optical astronomy: telescopes[M]. Switzerland: Springer International Publishing, 2017.
SARKAR S, SARKAR A, SIL P. Science with small telescopes[M]. Switzerland: Springer International Publishing, 2018.
CHENG J Q. The principles of astronomical telescope design[M]. USA: Springer US, 2009.
VELZEL C. Lens design process[M]. Netherlands: Springer Netherlands, 2014.
LI Fei, WANG Keyi. Design of optical imaging system for RGB three-channel diffraction telescope[J]. Journal of Applied Optics,2019,40(3):369-372.
SHI Jianrong. LAMOST telescope[J]. Chinese Science Bulletin,2016,61(12):1330-1335.
HAO Peiming, WANG Zhengting, YUAN Liyin, et al. Design of teflecting Newtion-Schmidt optical system[J]. Optical Instruments,2008,30(4):41-45.
LEI Cundong, ZHEN Liehua, CHE Ying. Optical design for off-axis all-reflective Schmidt system[J]. Acta Photonica Sinica,2014,43(11):55-59.

12

Accesses

0

Citation

Detail

段落导航
相关文章

/