为了克服太空环境的复杂性,满足航天工程的空间使用要求,研制一款2 500万像素宽光谱共焦成像的微型星载相机光学系统。该系统适应卫星发射和在轨道运行的恶劣环境,具有抗冲击震动、耐太空高温差强辐射,体积小,质量轻等优点。设计的系统可在450 nm~800 nm的谱段内清晰成像,焦距181 mm,入瞳口径45 mm,视场角10.4°,边缘相对照度0.81,轴上点MTF:0.57@55 lp/mm,0.33@110 lp/mm,畸变1.2%,镜头质量622 g,外形尺寸Φ58.3 mm×117 mm,抗辐照性能≥5 krad。通过温度适应性的模拟和优化,用户进行−30 ℃~+70 ℃光学镜头热真空试验,可正常工作。该系统已成功应用于天宫二号伴飞卫星相机中,获得的图像清晰稳定,为空间遥感实验观测发挥了重要的作用。
Abstract
In order to overcome the complexity of the space environment and meet the space operating requirements of the space engineering, a micro space-borne camera optical system of 25-megapixel wide-spectrum confocal imaging was developed. This system adapted to the harsh environment of satellite launch and orbit operation, which had the advantages of impact shock resistance, high temperature and differential radiation resistance in space, small size and light weight. The designed system can be clearly imaged in the spectrum of 450 nm−800 nm, of which the focal length is 181 mm, the entrance pupil diameter is 45 mm, the field angle is 10.4º, the edge relative illumination is 0.81. The modulation transfer function (MTF) is 0.57 at 55 lp/mm and 0.33 at 110 lp/mm, the distortion is 1.2%, the quality of lens is 622 g, the overall dimension is Φ58.3 mm×117 mm and the anti-radiation performance is more than 5 krad. Through the simulation and optimization of the temperature adaptability, the user can perform the thermal vacuum test of −30℃~+70℃ optical lens normally. This system is successfully applied to the accompanying satellite camera of Tiangong-2 space lab, the obtained images are clear and stable, which plays an important role in the space remote sensing experiment observation.
关键词
星载相机 /
共焦成像 /
多光谱 /
高分辨率 /
光学设计
{{custom_keyword}} /
Key words
optical design /
space-borne camera /
confocal imaging /
multispectral /
high resolution
{{custom_keyword}} /
基金
中央引导地方科技发展专项(2017L3009);福建省科技厅项目(2018G32)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
焦斌亮. 星载小型CCD相机发展现状及趋势[J]. 空间电子技术,1995(4):34-40.
兰丽艳, 黄颖. 星载大视场多光谱高分辨率CCD相机光学系统设计[J]. 航天返回与遥感,2002,23(4):34-37.
张丹枫. 星载多光谱相机光学系统设计[D]. 长春: 长春理工大学, 2012: 6-9.
李晓彤, 岑兆丰. 几何光学?像差?光学设计[M]. 杭州: 浙江大学出版社, 2003: 159-166.
刘乾, 杨维川, 袁道成, 等. 光谱共焦显微镜中色散物镜材料的优化选择[J]. 光电工程,2012,39(8):111-116.
李博. 靶场紫外望远系统光学设计[J]. 中国激光,2014,41(10):267-272.
巩盾, 王红, 田铁印. 温度对星载相机的影响和温控指标的制定[J]. 光学学报,2010,30(7):2017-2021.
李利, 张凯迪. 高分辨率超低畸变航天光学成像系统设计[J]. 应用光学,2019,40(3):363-368.
张建隆, 贺磊, 杨振. 高分辨率长焦广角低畸变光学成像系统设计[J]. 应用光学,2017,38(5):725-731.
HAN Changyuan. Recent earth imaging commercial satellites with high resolutions[J]. Chin. J. Opt. Appl. Opt.,2010,3(3):202-208.
JIAO Binliang. Development status and trend of small spaceborne CCD cameras[J]. Spatial Electronics Technology,1995(4):34-40.
LAN Liyan, HUANG Ying. Optical system design of wide-field, multi - spectrum and high-resolution CCD camera[J]. Journal of Astronautic Metrology,2002,23(4):34-37.
ZHANG Danfeng, Design of optical system for spaceborne multi-spectral camera[D]. Changchun: Changchun University of Science and Technology, 2012: 6-9.
CHEN Y H, HSIEH Y F, HSU C W, et al. An image based optical lens eccentric error inspection system[C]// Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International. USA: IEEE, 2012.
LI Xiaotong, CEN Zhaofeng. Geometrical optics, aberrations and optical design[M]. Hangzhou: Zhejiang University Press, 2003: 159-166.
LIU Gan, YANG Weichuan, YUAN Daocheng, et al. Optimization and selection of materials for
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}