针对航空相机复杂的使用环境以及需在高速运动中进行高分辨率成像的特点, 设计了一种大视场航空照相机光学系统。该系统光学结构采用双高斯准对称结构形式,通过双成像模块光学拼接扩大视场角,调整最后一片透镜实现内置调焦,且通过控制地物反射镜的3种工作模式,分别实现航空相机垂直照相、自动调焦及前向像移补偿功能,避免了航拍过程中温度、气压、航高等环境条件变化时引起的图像质量大幅下降,确保整个视场内成像质量不受影响。该光学系统设计实现了全视场无渐晕, 全视场最大畸变<0.5‰,在91 lp/mm处MTF接近衍射极限,物镜在全视场范围内成像质量一致。通过实验室及航拍试验验证,该光学系统具有成像清晰、视场大、可靠性高、体积小、质量轻等优点,满足了航空相机在比较复杂环境下清晰成像的要求。
Abstract
Aiming at the features of complex environment and needing high-resolution imaging in high-speed motion for aerocameras, a large-field of view(FOV) aerocamera optical system was designed. A double Gaussian symmetrical structure was adopted as the optical structure of this system, which expanded the camera's field angle by optical splicing with dual imaging modules, and the built-in focusing was achieved by adjusting the last lens. Throughcontrolling the three working modes of the ground objects reflector, the functions of vertical photograph, automatic focusing and forward image motion compensation for aerocameras were realized, respectively. Meanwhile, the image degradation caused by the changes in environmental conditions such as temperature, air pressure, and altitude during aerial photography was avoided to ensure the imaging quality throughout the FOV was not affected. In this design of the optical system, the full FOV without vignetting was realized, and the maximum distortion of the full FOV was less than 0.5‰. At 91 lp/mm, the modulation transfer function(MTF) was close to the diffraction limit, and the objective lens had the same imaging quality in the full FOV. The experimental results and aerial photography test prove that this optical system has the advantages of clear imaging, large FOV, high reliability, small size and light weight, which satisfies the requirements of the aerocameras to be clearly imaged in a relatively complex aviation environment.
关键词
高分辨率 /
大视场 /
自动调焦 /
光学系统 /
自动像移补偿 /
航空相机
{{custom_keyword}} /
Key words
high-resolution /
aerocamera /
automatic focusing /
large field of view /
optical system /
automatic image motion compensation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
王志坚, 王鹏, 刘智颖.光学工程原理[M].北京:国防工业出版社出版, 2010.
刘明, 刘钢, 李友.航空相机的像移计算及其补偿分析[J].光电工程, 2004, 31(增刊):14-17.
李林, 王煊.环境温度对光学系统影响的研究及无热系统设计的现状与发展[J].光学技术, 1997(5):26-29.
程晓薇, 车英, 薛常喜.CCD数字航空相机高分辨力成像关键技术与发展[J].电光与控制, 2009, 16(4):130-135.
刘海英, 王鹏, 朱海滨.航空相机用室内动态分辨率检测系统[J].应用光学, 2018, 39(增刊):148-151.
李林.应用光学[M].4版.北京:北京理工大学出版社, 2010.
王志坚, 王鹏, 刘泉.动态光学[M].北京:国防工业出版社出版, 2015.
安东.先进机载光电/红外成像系统[J].应用光学, 2018, 39(增刊):69-73.
李琦.自动对焦技术[D].杭州: 浙江大学, 2004.
贾平, 张葆.航空光电侦察平台关键技术及其发展[J].光学精密工程, 2003, 11(1):82-88.WANG Zhijian, WANG Peng, LIU Zhiying.Principles of optical engineering[M].Beijing:National Defense Industry Press, 2010.
LIU Ming, LIU Gang, LI You.The effect of image motion on the quality of aerial camera images[J].Opto Electronic Engineering, 2004, 31(Sup.):14-17.
LI Lin, WANG Xuan.Current status and prospects for thermal effects on optical system and athermailistationtechniques[J].Optical Technology, 1997(5):26-29.
CHENG Xiaowei, CHE Ying, XUE Changxi.Critical technologies and development on high-resolution aerial CCD digital airborne camera[J].Electronics Optics & Control, 2009, 16(4):130-135.
LIU Haiying, WANG Peng, ZHU Haibin.Laboratory dynamic resolution detection system for aerial cameras[J].Journal of Applied Optics, 2018, 39(Sup):148-151.
LI Lin.Applied optics[M].4th ed.Beijing:Beijing Institute of Technology Press, 2010.
WANG Zhijian, WANG Peng, LIU Quan.Dynamic optics[M].Beijing:National Defense Industry Press, 2015.
AN Dong.Reviews on advanced airborne EO/IR imagi
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}