基于最小二乘法多项式拟合三角测量模型研究

卢治功;贺鹏;职连杰;陈文建

应用光学 ›› 2019, Vol. 40 ›› Issue (5) : 853-858.

应用光学 ›› 2019, Vol. 40 ›› Issue (5) : 853-858. DOI: 10.5768/JAO201940.0503003

基于最小二乘法多项式拟合三角测量模型研究

  • 卢治功1,2, 贺鹏1,2, 职连杰1,2, 陈文建3
作者信息 +

Laser triangulation measurement model based on least square polynomial fitting method

  • LU Zhigong1,2, HE Peng1,2, ZHI Lianjie1,2, CHEN Wenjian3
Author information +
文章历史 +

摘要

激光三角法具有非接触测量、测量范围大、相对测量精度高、结构简单、环境适应性强等多种优点, 得到了广泛应用。但是三角测量的理论公式具有非线性特征, 而且光学结构参数(abθ)等在现实工程中具有不可测性。研究了三角测量中数学模型的建立方法, 选用多项式展开方法建立数学模型。通过应用最小二乘法拟合多项式的方法求解模型系数, 提出了根据最大相对拟合残差要求、结合相关系数用于控制拟合多项式阶数的评价方法, 并通过实际光学系统验证了该方法的可行性, 达到了0.01%的相对误差。最小二乘法拟合多项式的方法对于激光三角位移传感器的标定和系统误差消除具有实际的指导意义。

Abstract

The laser triangulation method has been widely applied due to its advantages in non-contact measurement, large measurement range, high accuracy in measurement, simple structure, high adaptability, etc. However, the theoretical formula of laser triangulation is nonlinear and the parameters (a, b, θ) of optic structure in practical engineering is immeasurable. Therefore, we investigated the construction approach of the mathematical model in triangulation, and adopted the polynomial expansion approach to build the model. Under the application of least square fitting polynomial method of the solution to the model coefficient, we proposed a evaluation method according to the requirements of the maximum relative fitting residual combined with the relative coefficients for controlling the fitting polynomial order. The feasibility of the method was verified by the practical optical system, with the relative error of 0.01%. The method of least square fitting polynomial has practical guiding significance for the calibration of laser triangular displacement sensor and the elimination of systematic error.

关键词

多项式拟合 / 测量模型 / 最小二乘法 / 激光三角法测量

Key words

laser triangulation method / measurement model / least square method / polynomial fitting

引用本文

导出引用
卢治功, 贺鹏, 职连杰, 陈文建. 基于最小二乘法多项式拟合三角测量模型研究. 应用光学. 2019, 40(5): 853-858 https://doi.org/10.5768/JAO201940.0503003
LU Zhigong, HE Peng, ZHI Lianjie, CHEN Wenjian. Laser triangulation measurement model based on least square polynomial fitting method. Journal of Applied Optics. 2019, 40(5): 853-858 https://doi.org/10.5768/JAO201940.0503003

参考文献

黄战华, 蔡怀宇, 李贺桥, 等.三角法激光测量系统的误差分析及消除方法[J].光电工程, 2002, 29(3):58-61.
任伟明, 孙培懋, 王亚雷.一种标定三角测量法激光位移计的方法[J].光学技术, 1997(3):10-15.
何凯, 陈星, 王建新.高精度激光三角位移测量系统误差分析[J].光学与光电技术, 2013, 11(3):62-66.
白福忠, 张小艳, 刘珍, 等.激光三角法中工作角对系统灵敏度的影响[J].应用光学, 2017, 38(5):826-830.
冯俊艳, 冯其波, 匡萃方.高精度激光三角位移传感器的技术现状[J].应用光学, 2004, 25(3):33-36.
李田泽, 王生德, 卢恒炜, 等.光电位置敏感器件的非线性分析及应用[J].应用光学, 2006, 27(5):400-403.
金攀, 屠大维, 张旭.水下同步扫描三角测距成像理论建模及仿真分析[J].应用光学, 2018, 39(6):849-855.
陈桂秀.用程序求解最小二乘拟合多项式的系数[J].青海师范大学学报(自然科学版), 2010(3):14-17.HUANG Zhanhua, CAI Huaiyu, LI Heqiao, et al. Analysis for error in triangular laser measurement system and an elimination method[J].Opto-Electronic Engineering, 2002, 29(3):58-61.
REN Weiming, SUN Peimao, WANG Yalei, et al. A calibration method for laser displacement system based on triangulation[J].Optical Tachnology, 1997(3):10-15.
HE Kai, CHEN Xing, WANG Jian, et al.Analysis of error in high precision laser triangulation displacement measurement sysytem[J].Optics & Optoelectronics Technologe, 2013, 11(3):62-66.
BAI Fuzhong, ZHANG Xiaoyan, LIU Zhen, et al.Effect of working angle on system sensitivity in laser triangulation[J].Journal of Applied Optics, 2017, 38(5):826-830.
FENG Junyan, FENG Qibo, KUANG Cuifang.Present status of high precision laser displacement sensor based on triangulation[J].Journal of Applied Optics, 2004, 25(3):33-36.
LI Tianze, WANG Shengde, LU Hengwei, et al. Nonlinearity analysis and application of optoelectronic position sensitive detector[J].Journal of Appli

19

Accesses

0

Citation

Detail

段落导航
相关文章

/