为实现表面微观形貌快速而较简单的检测, 一种使用非平行光干涉照明的光学显微三维形貌检测方法被提出。该方法使用空间光调制器对激光光束进行衍射, 选取光强相近的2个衍射级通过显微物镜, 双光束干涉可得到周期接近图像分辨率、相位可精确调节的照明条纹, 被测样本的三维形貌可通过拍摄4帧等相位差的条纹照明图像来计算得到。该方法不需借助干涉物镜产生条纹, 不需要轴向扫描装置记录条纹变化, 相位调节精确, 成像直观。此外, 该方法所产生干涉条纹的相位随坐标线性变化, 不需对条纹周期进行修正。因为照明条纹参数调节光路独立于显微成像光路, 系统装置具有光路简洁、易于调节的优点。为验证所提出三维检测精度, 以粗糙度100 nm的粗糙度对比模块和硅片为被测样品进行了三维轮廓重建实验, 实验结果显示, 所提出方法轴向重复性测量精度为8.6 nm(2σ)。
Abstract
In order to realize rapid and simple measurement on micro-topography, an optical detection method using interference illumination of nonparallel light was proposed. In this method, a spatial light modulator is used to diffract the laser beam, and two diffracted beams with similar intensity are selected to pass through the objective. Fringe which has accurate phase and period approximately equal to resolution can be obtained by dual-beam interference. The surface topography is detected by calculating four fringe images with equal phase difference. This method neither need interferometric objective to produce fringes nor axial scanning device to record fringe changes, therefore the phase adjustment is accurate, and the imaging is intuitive. In addition, because the phase varies linearly with the pixel coordinates, the fringe period does not need to be modified. The adjustment path of fringe parameters is separated from imaging path, hence the system is simple and easy to adjust. To verify the accuracy of the proposed micro-topography method, a module (Ra=100 nm) and a silicon wafer were used as the samples for three-dimensional reconstruction experiments. The results show that the proposed method can achieve a repeatability measurement accuracy of 8.6 nm (2σ) in axial direction.
关键词
三维检测 /
四步相移法 /
结构光投影 /
显微镜
{{custom_keyword}} /
Key words
three dimensional detection /
microscopy /
structured light projection /
four-step phase-shifting method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
刘斌, 冯其波, 匡萃方.表面粗糙度测量方法综述[J].光学仪器, 2004, 26(5):54-58.
樊颖, 邱丽荣, 赵维谦, 等.阶跃型三维形貌信息小波去噪方法研究[J].应用光学, 2016, 37(4):542-548.
孔文, 郎婷婷, 高峰, 等.高分辨率大视场线扫描共焦显微镜的设计与研制[J].光电工程, 2017, 44(6):616-620.
胡茂海, 陶纯堪, 卞松龄, 等.VC++环境下激光共焦扫描显微镜的成像实现[J].应用光学, 2001, 22(1):27-29.
段晓杰.基于光纤干涉条纹投射的结构光三维形貌测量技术研究[D].天津: 天津大学, 2013.
惠梅.表面微观形貌测量中相移干涉术的算法与实验研究[D].西安: 中国科学院西安光学精密机械研究所, 2001.
邓钦元, 唐燕, 周毅, 等.基于白光干涉频域分析的高精度表面形貌测量[J].中国激光, 2018(01):112-118.
郭鑫, 施玉书, 皮磊, 等. Mirau干涉型微纳台阶高度测量系统的研究[J].计量学报, 2017, 38(2):141-144.
LIU Bin, FENG Qibo, KUANG Cuifang. Survey of measurement methods for surface roughness[J]. Optical Instruments, 2004, 26(5):54-58.
FAN Ying, QIU Lirong, ZHAO Weiqian, et al. Wavelet denoising method for step three-dimensional shape information[J]. Journal of Applied Optics, 2016, 37(4):542-548.
KONG Wen, LANG Tingting, GAO Feng, et al. Design of high-resolution wide field of view confocal line scanning laser microscopy[J]. Opto-Electronic Engineering, 2017, 44(6):616-620.
HU Maohai, TAO Chunkan, BIAN Songling, et al. The imaging realization of confocal scanning optical microscopy in VC++[J]. Journal of Applied Optics, 2001, 22(1):27-29.
WHITEFIELD R J. Noncontact optical profilometer[J]. Applied Optics, 1975, 14(10):2480.
KNAUER M C, HAUSLER G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces[C].Strashourg: Optical Metrology in Production Engineering, 2004: 366-376.
DUAN Xiaojie. Research on technologies of structured light 3D profilometry based on f
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}