在单目结构光的三维测量系统中,由于投影仪倾斜投影, 参考平面上的条纹周期展宽, 给测量带来误差,降低了测量精度。同时受大物体自身几何和形貌等因素的影响,以及相交轴测量系统的限制,其单幅面测量范围受限,很难一次测量大物体完整的三维形貌,而且在测量大物体时,摄像机镜头非线性畸变也影响测量精度。根据参考平面上光栅条纹的周期变化规律,提出了一种适用性好、方便快捷的条纹周期校正的理论模型, 在此基础上, 提出了基于条纹周期校正的四步相移法的理论模型,进而提出了基于条纹周期校正的时间相位展开法的理论模型。采用摄像机镜头非线性畸变校正模型,提高测量精度。在被测物表面粘贴标志点,获取其三维坐标,利用SVD分解和L-M优化算法求取转换矩阵,并在设定的全局坐标系下实现三维图像拼接,采用线性加权算法,对重叠区域进行图像融合。实验结果表明,X轴的拼接误差为0.14 mm,Y轴的拼接误差为0.16 mm,Z轴的拼接误差为0.19 mm,其拼接误差均在测量误差允许范围之内。
Abstract
In three-dimensional measurement system based on structured light, the grating fringe cycle is broadened on the reference surface with the reason of the oblique-angle, which brings errors to the measurement and reduces the accuracy. At the same time, because of large objects' geometry and morphology and other factors, as well as the limit of the intersecting axis projection system, the single shape measuring range is limited. It is difficult to measure large objects' complete shape in one time. And when measuring large objects, camera lens' nonlinear distortion also affects the measurement accuracy. According to the periodic pattern of grating stripes on the reference plane, a well-fitted, convenient and quick stripe cycle correction method was proposed. Based on the cycle correction method, a theoretical model of four-step phase shift method was put up, and then a theoretical model of time phase unwrapping based on fringe period correction was proposed. After that, the lens distortion correction model was used to improve the measurement accuracy. With the mark points pasted on the surface of objects, the three-dimensional coordinates of them were got, as well as the transformation matrix by using the singular value decomposition (SVD) and Levenberg-Marquardt (L-M) optimization algorithm, and three-dimensional image mosaic was realized under the global coordinate system. Finally, the linear weighting algorithm was used to realize the image fusion of overlapping areas. Experimental results show that the registration errors in x, y, z axes are 0.14 mm, 0.16 mm, and 0.19 mm respectively, which all meet the requirements.
关键词
大物体 /
周期校正 /
三维拼接 /
标志点 /
单目结构光
{{custom_keyword}} /
Key words
large object /
monocular structure light /
cycle correction /
three-dimensional registration /
marked points
{{custom_keyword}} /
基金
国家自然科学基金(61661034);江西省教育厅科技项目(GJJ151234)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
苏显渝, 张启灿, 陈文静.结构光三维成像技术[J].中国激光, 2014, 41(2): 9-18.
陈一巍, 王飞, 王高文, 等.基于变换的子孔径拼接新算法[J].光学学报, 2013, 33(9): 168-173.
史金龙, 钱强, 庞林斌, 等.大尺度钢板的三维测量和拼接[J].光学精密工程, 2014, 22(5): 1165-1170.
邾继贵, 王大为, 叶声华, 等.基于单次成像的三维形貌拼接技术[J].机械工程学报, 2007, 43(6): 186-189.
秦绪红, 赵杰, 程俊廷.基于标志点的三维数据拼接方法研究[J].机械制造与自动化, 2013, 41(1): 134-136.
魏新国, 刘涛, 刘震.基于平面圆靶标的三维数据拼接[J].光学学报, 2013, 33(2): 137-143.
孙军华, 谢萍, 张广军, 等.基于分层块状全局搜索的三维点云自动配准[J].光学精密工程, 2013, 21(1): 174-180.
陶海跻, 达飞鹏.一种基于法向量的点云自动配准方法[J].中国激光, 2013, 40(8): 179-184.
任同群, 赵悦含, 龚春忠, 等.自由曲面
TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement 3-D object shapes[J]. Applied Optics, 1983, 22(24): 3977-3982.
SIVAGORTHI S, RASTOGI P. Fringe projection techniques: whither we are?[J].Optics and Lasers in Engineering, 2010, 48(2): 133-140.
SU Xiaoyu, ZHANG Qican, CHEN Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 2014, 41(2): 9-18.
FU Lin, LI Zhenhua, YANG Le, et al.New phase measurement profilometry by grating projection[J]. Optical Engineering, 2006, 45(7): 3601-3604.
SZELISKI R. Video mosaics for virtual environments[J]. IEEE Computer Graphics and Applications, 1996, 16(2): 22-30.
LOWE D G. Distinctive image features from scale-invariant key points[J]. International journal of computer vision, 2004, 60(2): 91-110.
CHEN Yiwen, WANG Fei, WANG Gaowen, et al. New sub-aperture stitching algorithm based on transformation[J]. Optics Letters, 2013, 33(9): 168-173.
FU Yanjun, LUO Qian. Fringe projection
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}