硬管式无人机AAR双目视觉导航算法研究

鲍继宇;王龙;董新民

应用光学 ›› 2017, Vol. 38 ›› Issue (6) : 910-916.

应用光学 ›› 2017, Vol. 38 ›› Issue (6) : 910-916. DOI: 10.5768/JAO201738.0602002

硬管式无人机AAR双目视觉导航算法研究

  • 鲍继宇1, 王龙1, 董新民1
作者信息 +

Binocular vision navigation algorithm for AAR of flying boom UAV

  • Bao Jiyu1, Wang Long1, Dong Xinmin1
Author information +
文章历史 +

摘要

针对硬管式无人机自主空中加油近距编队阶段的相对位置和姿态估计问题,研究了基于双目视觉的相对位姿估计算法。该算法采用Harris方法提取特征点,并对其进行快速匹配,通过Sampson方法三维重构获得特征点在摄像机坐标系下的三维坐标,以重构误差平方和最小为准则建立目标函数,利用单位四元数法求解位姿参数。最后利用仿真平台验证双目视觉位姿估计算法的有效性。结果表明:相对位置误差低于0.1 m,相对姿态误差小于0.5°,其精度满足自主空中加油相对导航性能要求。

Abstract

Aiming at the estimation problem of relative position and attitude of autonomous aerial refueling(AAR) of flying boom UAV in close formation stage, the relative pose estimation algorithm based on binocular vision is studied. The algorithm uses Harris method to extract feature points and quickly matches them. The 3D coordinates of feature points in camera coordinate system are obtained by Sampson method, and the objective function is established with the minimum square sum of reconstructed error. The position and pose parameters are solved by unit quaternion method. Finally simulation platform is used to verify the effectiveness of the algorithm. Results show the relative position error is better than 0.1 m, the relative attitude error is less than 0.5°, and the accuracy meets the requirements of AAR relative navigation performance.

关键词

自主空中加油 / 双目视觉 / 位姿估计 / 无人机

Key words

unmanned aerial vehicle / AAR / binocular vision / pose estimation

引用本文

导出引用
鲍继宇, 王龙, 董新民. 硬管式无人机AAR双目视觉导航算法研究. 应用光学. 2017, 38(6): 910-916 https://doi.org/10.5768/JAO201738.0602002
Bao Jiyu, Wang Long, Dong Xinmin. Binocular vision navigation algorithm for AAR of flying boom UAV. Journal of Applied Optics. 2017, 38(6): 910-916 https://doi.org/10.5768/JAO201738.0602002

基金

国家自然科学基金资助项目(61473307)

参考文献

董新民, 徐跃鉴, 陈博.自动空中加油技术研究进展与关[J].空军工程大学学报:自然科学版, 2008, 9(6): 1-5.
董晶, 傅丹, 杨夏.无人机视频运动目标实时检测及跟踪[J].应用光学, 2013, 34(2): 255-259.
陆宇平, 杨朝星, 刘洋洋.空中加油系统的建模与控制技术综述[J].航空学报, 2014, 35(9): 2375-2389.
蔡鸣, 孙秀霞, 徐嵩, 等.视觉技术辅助的无人机自主着陆组合导航研究[J].应用光学, 2015, 36(3): 343-349.
李波睿, 慕春棣, 吴波涛.基于视觉的自动空中加油近距相对位姿估计[J], 清华大学学报:自然科学版, 2012, 52(12): 1664-1669.
纪超, 王庆.基于双目视觉的自主空中加油算法研究与仿真[J].系统仿真学报, 2013, 25(6): 1327-1331.
解洪文, 王宏伦.基于双目视觉的自动空中加油近距导航方法[J].北京航空航天大学学报, 2011, 37(2): 206-209.
王威, 唐一平, 任娟莉, 等.一种改进的Harris角点提取算法[J].光学
Dong Xinmin, Xu Yuejian, Chen Bo. Process and challenges in automatic aerial refueling[J]. Journal of Air Force Engineering University:Natural Science Edition, 2008, 9(6): 1-5.
Riley D R. Automated aerial refueling(AAR)technologies and challenges[C]//AFRL-VA-WP-TP-2004-314.Wright-Patterson Air Force Base: Air Force Research Laboratory, 2004.
Ren X, Wang C, Yi G. Ducted fan UAV hovering attitude control[J].Electronic and Mechanical Engineering and Information Technology(EMEIT), 2011 International Conference on IEEE, 2011, 1:421-424.
Dong Jing, Fu Dan, Yang Xia. Real-time moving object detection and tracking by using UAV videos[J]. Journal of Applied Optics, 2013, 34(2): 255-259.
Joseph P Nalepka, Jacob L H.Automated aerial refueling: extending the effectiveness of unmanned air vehicles[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. California: AIAA, 2005.
Lu Yuping, Yang Zhaoxing, Liu Yangyang. A survey of modeling and control technologies for aerial refueling system[

文章所在专题

智能系统与装备

8

Accesses

0

Citation

Detail

段落导航
相关文章

/