条纹花样的单帧相位解调算法在实时、动态测量技术中具有广泛应用。次条纹积分算法具有较高抗噪能力,但其采用载频近似估算形变条纹周期时存在频率失配的固有缺陷,提出一种改进的次条纹积分算法,对条纹的局域频率进行探测,利用局域频率进行次条纹积分,然后再计算相位。模拟实验表明,改进算法的最大误差约为原算法的1/3,并通过条纹投影轮廓术实验进一步证明了改进算法的有效性,为单帧条纹相位分析技术提供了一种可供选择的新算法。
Abstract
Singleframe phase demodulation algorithms for fringe pattern are widely employed in realtime and dynamic measurement techniques. Subfringe integration(SI) algorithm has an advantage of strong antinoise ability. However, the period estimation of the deformed pattern using the carrier frequency would result in frequency mismatch. Against the inherent defect, an improved algorithm was proposed. The proposed algorithm estimated the local frequency, and then computed the intensity integration for phase extraction. Results show that the phase error of the new algorithm is one third of the original algorithm in simulations. The finge projection profilometry experiment was also conducted to demonstrate the validity of the proposed algorithm. This papar provides a candidate for singleframe fringe phase analysis technique.
关键词
相移 /
局域频率 /
相位测量 /
条纹相位分析
{{custom_keyword}} /
Key words
phase shift /
phase measurement /
fringe phase analysis /
local frequency
{{custom_keyword}} /
基金
国家自然科学基金(61475064);广东省科技计划项目(2013B060100001)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Gorthi S S,Rastogi P. Fringe projection techniques: whither we are? [J]. Optics and Lasers in Engineering, 2010, 48(2): 133-140.
[2]Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 2014,41(2):0209001.
苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光,2014,41(2):0209001.
[3]Zhang Song. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering, 2010, 48(2): 149-158.
[4]Takeda M, Ina H, Kobayashi S. Fourier-transform algorithm of fringe-pattern analysis for computer-based topography and interferometry[J]. JOSA, 1982,72:156-160.
[5]Su Xianyu, Chen Wenjing. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering, 2001, 35(2): 263-284.
[6]Zhong Jingang, Weng Jiawen. Dilating Gabor transform for the fringe analysis of 3-D shape measurement[J]. Optical Engineering, 2004,
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}