基于水下爆炸理论,采用耦合欧拉-拉格朗日(CEL)方法,建立了CL-20基含铝炸药水下爆炸模型,分析了冲击波载荷和气泡动力学特性; 在此基础上探究了双发CL-20基含铝装药水下爆炸冲击波时空分布规律及气泡融合特性,讨论了不完整刚性边界附近双发CL-20基含铝装药水下爆炸气泡动力学特性,得到了装药种类、破口尺寸和爆距3种关键因素对双发装药水下爆炸气泡载荷特性的影响。结果表明,与TNT装药相比,CL-20基含铝装药水下爆炸气泡半径和脉动周期更大,气泡最大半径增大了27%,脉动周期提高了65%,但气泡脉动压力小于TNT。双发CL-20基含铝装药在水平和垂直位置具有特征尖锐波峰-波谷载荷曲线和特征双峰曲线,冲击波峰值压力大于单发装药,最大增长率可达48.26%。不完整刚性边界破口尺寸、爆距增大会增加双发装药气泡射流宽度和持续时间,CL-20会加剧不完整边界对气泡动力学的影响。
Abstract
To investigate the bubble pulsation and water jet characteristics under the gas-liquid-solid multiphase coupling effect of underwater explosions near the seabed, the Euler method was employed to establish a numerical model of underwater explosions near the seabed under different substrate/water depth conditions. The full physical process of underwater explosions near the seabed under muddy substrate conditions was simulated and compared with experimental results, which showed good agreement, verifying the effectiveness of the algorithm in solving the problem of underwater explosion bubbles near the seabed. Based on this, the influence of seabed substrate and water depth on the bubble morphology, radius, period, and water jet of underwater explosions near the seabed was discussed. The results show that under the premise that the bubbles can be split, the harder the substrate, the faster the bubbles split, and the deeper the water depth, the slower the bubbles split. The harder the substrate and the deeper the water depth, the smaller the maximum radius and period of the bubble, the larger the proportion of the bubble in the total bubble volume at the moment of splitting, and the smaller the peak velocity of the two water jets generated by splitting. During the evolution of the downward water jet, a reverse water jet will form. The harder the substrate, the greater the peak velocity of the reverse water jet. In all calculated cases, the depth parameter(Href)is in the range of 250—750, and the peak value of the reverse water jet velocity is positively correlated with the Href, and the Href is in the range of 750—1000, which is negatively correlated.
关键词
爆炸力学 /
CL-20基含铝炸药 /
水下爆炸 /
冲击波 /
气泡动力学 /
不完整边界 /
耦合欧拉-拉格朗日(CEL)方法
{{custom_keyword}} /
Key words
mechanics explosion /
CL-20-based aluminized explosive /
underwater explosive /
shock wave /
bubble dynamics /
incomplete boundary /
coupled Eulerian-Lagrangian(CEL)method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯凇, 饶国宁, 彭金华. CL-20基含铝炸药水下爆炸实验研究与数值模拟(英文)[J]. 含能材料, 2018,26(8): 686-695.
FENG Song, RAO Guo-ning, PENG Jin-hua. Experimental study and numerical simulation of CL-20-based aluminized explosive in underwater explosion[J]. Energetic Materials, 2018,26(8): 686-695.
[2]田俊宏, 孙远翔, 张之凡. 铝氧比对含铝炸药水下爆炸载荷及能量输出结构的影响[J]. 高压物理学报, 2019,33(6): 146-154.
TIAN Jin-hong, SUN Yuan-xiang, ZHANG Zhi-fan. The effect of aluminium-oxygen ratio on the underwater blast load and energy output structure of aluminium-containing explosives[J]. Chinese Journal of High Pressure Physics, 2019,33(6): 146-154.
[3]敖启源, 卢熹, 姜智雅, 等. 水下爆炸冲击波数值仿真精度研究[J]. 水下无人系统学报, 2024,32(1): 158-165.
AO Qi-yuan, LU Xi, JIANG Zhi-ya, et al. Numerical simulation accuracy study of underwater explosion shock waves[J]. Journal of Unmanned Undersea Systems, 2024,32(1): 158-165.
[4]唐皓, 刘云龙, 冯集团, 等. 水下爆炸异相气泡动力学特性的Euler有限元数值模拟研究[J]. 应用数学和力学, 2023,44(8): 895-908.
TANG Hao, LIU Yun-long, FENG Ji-tuan, et al. Eulerian finite-element numerical simulation investigation on the dynamic characteristics of out-of-phase bubbles in underwater explosions[J]. Applied Mathematics and Mechanics, 2023,44(8): 895-908.
[5]姚熊亮, 王志凯, 赵坤, 等. 水下爆炸冲击因子异化特征研究[J]. 振动与冲击, 2023,42(22): 138-154.
YAO Xiong-liang, WANG Zhi-kai, ZHAO Kun, et al. Influence of a single-valued physical quantity on the impact factors of underwater explosion[J]. Journal of Vibration and Shock, 2023,42(22): 138-154.
[6]刘晓波, 李帅, 张阿漫. 水下爆炸冲击波壁压理论及数值计算方法改进研究[J]. 爆炸与冲击, 2022,42(1): 120-132.
LIU Xiao-bo, LI Shuai, ZHANG A-man. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion[J]. Explosion and Shock Waves, 2022,42(1): 120-132.
[7]王平平, 张阿漫, 彭玉祥, 等. 近场水下爆炸瞬态强非线性流固耦合无网格数值模拟研究[J]. 力学学报, 2022,54(8): 2194-2209.
WANG Ping-ping, ZHANG A-man, PENG Yu-xiang, et al. Numerical simulation of transient strongly-nonlinear fluid structure interaction in near-field underwater explosion based on meshless method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022,54(8): 2194-2209.
[8]李帅, 张阿漫, 韩蕊. 水中高压脉动气泡水射流形成机理及载荷特性研究[J]. 力学学报, 2019,51(6): 1666-1681.
LI Shuai, ZHANG A-man, HAN Rui. The mechanism of jetting behaviors of an oscillating bubble[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6): 1666-1681.
[9]李世民, 张阿漫, 崔璞. 刚性壁面附近气泡和自由面的耦合效应研究[J]. 空气动力学学报, 2020,38(4): 796-806.
LI Shi-min, ZHANG A-man, CUI Pu. Study on the interaction between the bubble and free surface close to a rigid wall[J]. Acta Aerodynamica Sinica, 2020,38(4): 796-806.
[10]贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用[J]. 爆炸与冲击, 2020,40(11): 37-47.
HE Ming, ZHANG A-man, LIU Yun-long. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes[J]. Explosion and Shock Waves, 2020,40(11): 37-47.
[11]陈启航, 张阿漫, 李帅. 改进的固定边界上方气泡射流方向判定准则[J]. 国防科技大学学报, 2023,45(4): 147-152.
CHEN Qi-hang, ZHANG A-man, LI Shuai. Modified criteria for jet direction of bubbles above a rigid boundary[J]. Journal of National University of Defense Technology, 2023,45(4): 147-152.
[12]徐润泽, 唐皓, 李世民, 等. 基于气泡统一方程的水下爆炸气泡迁移特征参数影响规律研究[J]. 力学学报, 2024, 54(8): 1-11.
XU Run-ze, TANG Hao, LI Shi-min, et al. Study on the influence of migration character parameters for underwater explosion bubbles based on the unified equation for bubble dynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 54(8): 1-11.
[13]段超伟, 宋浦, 胡宏伟, 等. 水下爆炸气泡脉动周期的简便计算方法[J]. 高压物理学报, 2022,36(1): 185-191.
DUAN Chao-wei, SONG Pu, HU Hong-wei, et al. A simple method for calculating the pulsation period of underwater explosive bubbles[J]. Chinese Journal of High Pressure Physics, 2022,36(1): 185-191.
[14]俞旸晖, 郭锐, 宋浦, 等. 含铝炸药水下两点爆炸冲击波超压特性研究[J]. 水下无人系统学报, 2022,30(3): 300-307.
YU Yang-hui, GUO Rui, SONG Pu, et al. Overpressure characteristics of shock waves generated by underwater two-point explosion from aluminized explosives[J]. Journal of Unmanned Undersea Systems, 2022,30(3): 300-307.
[15]毛致远, 段超伟, 刘刚伟, 等. 圆柱壳结构水下爆炸冲击波毁伤的吸收冲量准则[J]. 火炸药学报, 2023,46(3): 245-251.
MAO Zhi-yuan, DUAN Chao-wei, LIU Gang-wei, et al. Damage criterion of cylindrical shell structure under underwater explosion shock wave: absorbed impulse criterion[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2023,46(3): 245-251.
[16]刘元凯, 秦健, 迟卉, 等. 不同长径比柱形炸药水下爆炸气泡动力学行为特性[J]. 火炸药学报, 2024,47(1): 51-63.
LIU Yuan-kai, QIN Jian, CHI Hui, et al. Dynamic behavior characteristics of underwater explosion bubbles with different length-diameter ratios[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2024,47(1): 51-63.
[17]李彪彪, 王辉, 沈飞, 等. 壳体对炸药水下爆炸近场特性的影响[J]. 火炸药学报, 2019,42(1): 58-62.
LI Biao-biao, WANG Hui, SHEN Fei, et al. Effect of shell on short-range characteristics of underwater blast of explosive[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2019,42(1): 58-62.
[18]杨斐, 罗一鸣, 王建灵, 等. 铝氧比对DNTF/AP/AI炸药水下能量输出结构的影响[J]. 火炸药学报, 2015,38(2): 54-57.
YANG Fei, LUO Yi-ming, WANG Jian-ling, et al. Effect of Al/O ratio on the underwater energy output configuration of DNTF/AP/Al explosives[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015,38(2): 54-57.
[19]COLE R H. Underwater Explosions[M]. Princeton: Princeton University Press, 1948.
[20]ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion[R]. Washington: Naval Intelligence Support Center, 1973.
[21]RAYLEIGH J W. On the Pressure Developed in A Liquid During the Collapse of A Spherical Cavity[M]. London: Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1917.
[22]ZHANG A-man, LI Shi-min, CUI Pu, et al. A unified theory for bubble dynamics[J]. Physics of Fluids, 2023,35(3): 033323.
[23]HEUZ O. General form of the mie-grüneisen equation of state[J]. Comptes Rendus Mécanique, 2023,35(3): 033323.
[23]HEUZ O. General form of the mie-grüneisen equation of state[J]. 012,340(10): 679-687.
[24]ANSYS. Autodyn Explicit Software for Nonlinear Dynamics[M]. Canonsburg: Century Dynamics Inc, 2005.
[25]LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products[R]. Livermore: Univ. of California Radiation Lab, 1968.
[26]LEE E L, FINGER M, COLLINS W. JWL equations of state coeffs for high explosives, UCID-16189[R]. Livermore: Lawrence Livermore National Lab, 1973.
[27]田俊宏. 含铝炸药近场水下爆炸及结构毁伤研究[D]. 北京:北京理工大学, 2019.
TIAN Jun-hong. Study on near-field underwater explosion of aluminized explosive and its damage to structure[D]. Beijing: Beijing Institute of Technology, 2019.
[28]JONES D A, NORTHEAST E D. Effects of case thickness on the performance of underwater mines[M]. Melbourne: DSTO Aeronautical and Maritime Research,1995.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}