铝热剂应用研究进展

邓正亮,王亚军,刘瑞华,甘强,冯长根

火炸药学报 ›› 2024, Vol. 47 ›› Issue (7) : 575-590.

PDF(2490 KB)
  • 主管:中国科学技术协会

    主编:魏 卫

    ISSN 1007-7812

     
  • 主办:中国兵工学会与中国兵器工业第204研究所共同

    出版:《火炸药学报》 编辑部

    CN 61-1310/TJ

PDF(2490 KB)
火炸药学报 ›› 2024, Vol. 47 ›› Issue (7) : 575-590. DOI: 10.14077/j.issn.1007-7812.202312003

铝热剂应用研究进展

  • 邓正亮,王亚军,刘瑞华,甘强,冯长根
作者信息 +

Research Progress on the Application of Thermite

  • DENG Zheng-liang, WANG Ya-jun, LIU Rui-hua, GAN Qiang, FENG Chang-gen
Author information +
文章历史 +

摘要

为深入理解铝热剂的应用情况,首先回顾了其发展历程,以实际应用问题为导向,对铝热剂在微含能器件(如微点火器和微推进器)、含能药剂(如烟火药、推进剂及其添加剂、起爆药和炸药添加剂)、材料制备(包括材料制备与合成、材料焊接)及其他领域(如安全装置、微生物灭杀、金属热切割和油井封堵)的应用研究进行了综述,并探讨了铝热剂应用中的安全性问题(包括感度和毒性问题); 总结了当前铝热剂应用研究存在的不足,如性能优异的铝热剂种类较为单一、对新应用场景开拓不足、对铝热剂的安全性研究不够深入等问题。最后对铝热剂应用研究未来的研究方向和发展趋势进行了展望,认为未来应朝着开发新型铝热剂、拓展新的应用领域以及深入研究铝热剂应用安全性等方向发展。附参考文献124篇。

Abstract

In order to understand the application of thermite, firstly, the development process is reviewed. Then, guided by practical application problems, the application of thermites in micro energetic devices(such as microigniters and microthrusters), energetic agents(such as pyrotechnics, propellants and their additives, primary explosives, and explosive additives), material preparation(including material preparation and synthesis, material welding), and other fields(such assafety devices, microbial killing, metal thermal cutting and oil well plugging)are reviewed. The safety issues(including sensitivity and toxicity)in the application of thermites are discussed. The shortcomings of the application of thermites research are summarized, such as the type of thermites with excellent performance are relatively simple,the development of new application scenarios is insufficient, and the safety research of thermite is not deep enough. Finally, the future research direction and development trend of thermite application research are prospected, and the development direction should be to develop new thermite, expand new application fields, and further study the application safety of thermite.With 124 references.

关键词

铝热剂 / 铝热反应 / 含能器件 / 含能药剂 / 微点火器件 / 微推进器

Key words

thermite / thermite reaction / energetic device / energetic agent / microigniter / microthruster

引用本文

导出引用
邓正亮,王亚军,刘瑞华,甘强,冯长根. 铝热剂应用研究进展. 火炸药学报. 2024, 47(7): 575-590 https://doi.org/10.14077/j.issn.1007-7812.202312003
DENG Zheng-liang, WANG Ya-jun, LIU Rui-hua, GAN Qiang, FENG Chang-gen. Research Progress on the Application of Thermite. Chinese Journal of Explosives & Propellants. 2024, 47(7): 575-590 https://doi.org/10.14077/j.issn.1007-7812.202312003
中图分类号: TJ55    O642   

参考文献

[1] SUNDARAM D, YANG V, YETTER R A. Metal-based nanoenergetic materials: synthesis, properties, and applications [J]. Progress in Energy and Combustion Science, 2017, 61: 293-365.
[2]ZAKY M G, ELBEIH A, ELSHENAWY T. Review of nano-thermites: a pathway to enhanced energetic materials [J]. Central European Journal of Energetic Materials, 2021, 18(1): 63-85.
[3]张松林, 武斌, 秦志桂, 等. 2Al/Fe2O3铝热剂的点火温度[J]. 含能材料, 2010, 18(2): 162-166.
ZHANG Song-lin, WU Bin, QIN Zhi-gui, et al. Ignition temperature of 2Al/Fe2O3 thermite[J]. Chinese Journal of Energetic Materials, 2010, 18(2): 162-166.
[4]HUNT E M, MALCOLM S, PANTOYA M L, et al. Impact ignition of nano and micron composite energetic materials [J]. International Journal of Impact Engineering, 2009, 36(6): 842-846.
[5]BEZMELNITSYN A, THIRUVENGADATHAN R, BARIZUDDIN S, et al. Modified nanoenergetic composites with tunable combustion characteristics for propellant applications [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4): 384-394.
[6]MARíN L, GAO Y, VALLET M, et al. Performance enhancement via incorporation of ZnO nanolayers in energetic Al/CuO multilayers [J]. Langmuir, 2017, 33(41): 11086-11093.
[7]KABRA S, GHARDE S, GORE P M, et al. Recent trends in nanothermites: fabrication, characteristics and applications [J]. Nano Express, 2020, 1(3): 032001.
[8]GUO X, LIANG T, ISLAM M L, et al. Highly Reactive Thermite Energetic Materials: preparation, characterization, and applications: a review [J]. Molecules, 2023, 28(6): 2520.
[9]张莹莹, 刘唯, 林军, 等. 纳米铝热剂的制备与研究进展[J]. 应用化工, 2022, 51(3): 868-872.
ZHANG Ying-ying, LIU Wei, LIN Jun. Progress in the preparation and research of nano-thermite[J]. Applied Chemical Industry, 2022, 51(3): 868-872.
[10]WANG Y, LIU R, WAN Y. Thermal reaction properties of aluminum/iron fluoride nanothermites [J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(12): 5297-5308.
[11]崔巍, 王亚军, 甘强, 等. 纳米铝热剂的微观模拟研究进展[J]. 火炸药学报, 2022, 45(5): 597-611.
CUI wei, WANG Ya-jun, GAN Qiang, et al. Research progress in microscopic simulation of nanothermites[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2022, 45(5): 597-611.
[12]GOLDSCHMIDT H. “Verfahren zur Herstellung von Metallen oder Metalloiden oder Legierungen derselben”(Process for the production of metals or metalloids or alloys of the same): DE,96317[P]. 1895.
[13]LONSDALE C P, ENGINEER M. Thermite rail welding: history, process developments, current practices and outlook for the 21st century [C]∥Proc AREMA Annu Conf. Chicago:IL,1999, 1895: 18.
[14]茜林格 H A. 炸药与炮弹装药简明教程[M]. 李兆麟, 孙政,译. 北京: 国防工业出版社, 1955.
[15]LAFONTAINE E, COMET. 纳米铝热剂[M]. 李国平, 凌剑, 罗运军, 译. 北京: 国防工业出版社, 2018.
[16]ZHOU X, TORABI M, LU J, et al. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications [J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3058-3074.
[17]周超, 李国平, 罗运军. 纳米铝热剂的研究进展[J]. 化工新型材料, 2010, 38(S1): 4-7.
ZHOU Chao, LI Guo-ping, LUO Yun-jun. Research progress on nano-thermite[J]. New Chemical Materials, 2010, 38(S1): 4-7.
[18]MARIROSYAN K S, WANG L, VICENT A, et al. Nanoenergetic gas-generators: design and performance [J]. Propellants, Explosives, Pyrotechnics, 2009, 34(6): 532-538.
[19]KOBYAKOV V P, SACHKOVA N V, SICHINAVA M A. Self-propagating high-temperature synthesis products in Fe2O3/TiO2/Al and Fe2O3/TiO2/Al/C thermite systems [J]. Inorganic Materials, 2010, 46: 1396-1401.
[20]DE ANDRADE G S, DE LEMOS M J S, COLOMBO D. A new hybrid analytical/numerical method for transient heat conduction in composite hollow cylinders applied to plug and abandonment of oil wells [J]. International Journal of Thermal Sciences, 2021, 168: 106981.
[21]YU C, ZHENG Z, GU B, et al. Aluminum/lead tetroxide nanothermites for semiconductor bridge applications [J]. Chemical Engineering Journal, 2023, 451: 138614.
[22]SHEN R, YE Y, WANG C, et al. Chemical propulsion of microthrusters [M]∥Nanomaterials in Rocket Propulsion Systems. Amsterdam:Elsevier, 2019: 389-402.
[23]BHATTACHARYA S, AGARWAL A K, RAJAGOPALAN T, et al. Nano-energetic materials [M]. Berlin: Springer, 2019.
[24]POLIS M, STOLARCZYK A, GLOSZ K, et al. Quo vadis, nanothermite? A review of recent progress [J]. Materials, 2022, 15(9): 3215.
[25]杭思羽, 徐闻婷, 韩志伟, 等. 铝-氟聚物含能亚稳态复合材料研究进展[J]. 材料导报, 2019, 33(S2): 410-414.
HANG Si-yu, XU Wen-ting, HAN Zhi-wei, et al. Research progress on reaction mechanism of aluminum-fluoropolymer energetic metastable intermixed composites[J]. Materials Reports, 2019, 33(S2): 410-414.
[26]李师, 郭涛, 刘晓峰, 等. 复合铝热剂研究进展[J]. 含能材料, 2021, 29(11): 1115-1124.
LI Shi, GUO Tao, LIU Xiao-feng, et al. Research progress of composite thermite[J]. Chinese Journal of Energetic Materials, 2021, 29(11): 1115-1124.
[27]顾晓然, 李顺, 唐宇, 等. 超级铝热剂的发展现状[J]. 材料导报, 2023, 37(10): 153-160.
GU Xiao-ran, LI Shun, TANG Yu, et al. Recent advances in super-thermite[J]. Materials Reports, 2023, 37(10): 153-160.
[28]王亚军, 李泽雪, 于海洋, 等. 亚稳态分子间复合物反应机理研究[J]. 化学进展, 2016, 28(11): 1689-1704.
WANG Ya-jun, LI Ze-xue, YU Hai-yang, et al. Recent mechanism of metastable intermolecular composites[J]. Progress in Chemistry, 2016, 28(11): 1689-1704.
[29]李勇, 周彬, 秦志春, 等. 火工品用复合半导体桥技术的研究与发展[J]. 含能材料, 2013, 21(3): 387-393.
LI Yong, ZHOU Bin, QIN Zhi-chun, et al. Development of composite semiconductor bridge technique for electrical-explosive device[J]. Chinese Journal of Energetic Materials, 2013, 21(3): 387-393.
[30]BAGINSKI T A, TALIAFERRO S L, FAHEY W D. Novel electroexplosive device incorporating a reactive laminated metallic bridge [J]. Journal of Propulsion and Power, 2001, 17(1): 184-189.
[31]RU C, WANG F, XU J, et al. Superior performance of a MEMS-based solid propellant microthruster(SPM)array with nanothermites [J]. Microsystem Technologies, 2017, 23: 3161-3174.
[32]PEZOUS H, ROSSI C, SANCHEZ M, et al. Fabrication, assembly and tests of a MEMS-based safe, arm and fire device [J]. Journal of Physics and Chemistry of Solids, 2010, 71(2): 75-79.
[33]任晓雪, 彭翠枝, 秦涧, 等. 国外纳米铝热剂的最新研究进展[J]. 火炸药学报, 2019, 42(2): 107-113.
REN Xiao-xue, PENG Cui-zhi, QIN Jian, et al. Recent progress in foreign nano-thermite[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2019, 42(2): 107-113.
[34]FISCHER S H, GRUBELICH M C. Theoretical energy release of thermites, intermetallics, and combustible metals [R]. Albuquerque:Sandia National Lab(SNL-NM),1998.
[35]ZHU P, SHEN R, YE Y, et al. Characterization of Al/CuO nanoenergetic multilayer films integrated with semiconductor bridge for initiator applications [J]. Journal of Applied Physics, 2013, 113(18): 184505.
[36]李勇, 王军, 高泽志, 等. 多晶硅与Al/CuO复合薄膜集成的含能点火器件的点火性能[J]. 含能材料, 2016, 24(2): 182-187.
LI Yong, WANG Jun, GAO Ze-zhi, et al. Ignition performances of energetic igniters integrated by integrating polysilicon with Al/CuO multilayer films[J]. Chinese Journal of Energetic Materials, 2016, 24(2): 182-187.
[37]杨腾龙, 沈云, 代骥, 等. 一种Ni-Cr@Al/CuO钝感含能元件的制备及性能[J]. 含能材料, 2019, 27(10): 830-836.
YANG Teng-long, SHEN Yun, DAI Ji, et al. Fabrication and characterization of a Ni-Cr@Al/CuO insensitive energetic element[J]. Chinese Journal of Energetic Materials, 2019, 27(10): 830-836.
[38]NI D, YU G, SHI S, et al. Gap initiation with 20.35 mm: an initiator integrating the Al/CuOx multilayer film and traditional electronic plug to enhance the ignition ability [J]. Royal Society Open Science, 2019, 6(5): 181686.
[39]KIM K J, JUNG H, KIM J H, et al. Nanoenergetic material-on-multiwalled carbon nanotubes paper chip as compact and flexible igniter [J]. Carbon, 2017, 114: 217-223
[40]ZHOU X, SHEN R, YE Y, et al. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator [J]. Journal of Applied Physics, 2011, 110(9): 094505.
[41]史安然, 周宇轩, 沈云, 等. 基于Cu阻挡层的Al/CuO含能半导体桥的电爆性能研究[J]. 爆破器材, 2022, 51(5): 1-6.
SHI An-ran, ZHOU Yu-xuan, SHEN Yun, et al. Electric explosion performance of Al/CuO energetic semiconductor bridge based on Cu barrier layer[J]. Explosive Materials, 2022, 51(5): 1-6.
[42]ZHU P, SHEN R, YE Y, et al. Energetic igniters realized by integrating Al/CuO reactive multilayer films with Cr films [J]. Journal of Applied Physics, 2011, 110(7): 074513.
[43]DAI J, WANG C, WANG Y, et al. From nanoparticles to on-chip 3D nanothermite: electrospray deposition of reactive Al/CuO@NC onto semiconductor bridge and its application for rapid ignition [J]. Nanotechnology, 2020, 31(19): 195712.
[44]李杰, 朱朋, 胡博, 等. Al/CuO肖特基结换能元芯片的非线性电爆换能特性[J]. 含能材料, 2016, 24(3): 279-283.
LI Jie, ZHU Peng, HU Bo, et al. Nonlinear energy conversion performance of electrical explosion of Schottky barrier structured Al/CuO transduction chip[J]. Chinese Journal of Energetic Materials, 2016, 24(3): 279-283.
[45]FU S, SHEN R, ZHU P, et al. Metal-interlayer-metal structured initiator containing Al/CuO reactive multilayer films that exhibits improved ignition properties [J]. Sensors and Actuators A: Physical, 2019, 292: 198-204.
[46]ZHU P, JIAO J, SHEN R, et al. Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip [J]. Journal of Applied Physics, 2014, 115(19): 194502.
[47]GUO X, SUN Q, LIANG T, et al. Controllable electrically guided nano-Al/MoO3 energetic-film formation on a semiconductor bridge with high reactivity and combustion performance [J]. Nanomaterials, 2020, 10(5): 955.
[48]XU J, SHEN Y, WANG C, et al. Controlling the energetic characteristics of micro energy storage device by in situ deposition Al/MoO3 nanolaminates with varying internal structure [J]. Chemical Engineering Journal, 2019, 373: 345-354.
[49]XU J, TAI Y, RU C, et al. Characteristic of energetic semiconductor bridge based on Al/MoOx energetic multilayer nanofilms with different modulation periods [J]. Journal of Applied Physics, 2017, 121(11): 113301.
[50]XU J, TAI Y, RU C, et al. Tuning the ignition performance of a microchip initiator by integrating various Al/MoO3 reactive multilayer films on a semiconductor bridge [J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5580-5589.
[51]王亚军, 江自生, 冯长根. 亚稳态分子间复合物Al/Bi2O3及其应用[J]. 化学进展, 2016, 28(2/3): 391-400.
WANG Ya-jun, JIANG Zi-sheng, FENG Chang-gen. Metastable intermolecular composite Al/Bi2O3 and its applications[J]. Progress in Chemistry, 2016, 28(2/3): 391-400.
[52]STALEY C S, MORRIS C J, Thiruvengadathan R, et al. Silicon-based bridge wire micro-chip initiators for bismuth oxide-aluminum nanothermite [J]. Journal of Micromechanics and Microengineering, 2011, 21(11): 115015.
[53]MA X, CHENG S, HU Y, et al. Integrating micro-ignitors with Al/Bi2O3/graphene oxide composite energetic films to realize tunable ignition performance [J]. Journal of Applied Physics, 2018, 123(9): 095305.
[54]ZHU P, SHEN R, FIADOSENKA N N, et al. Dielectric structure pyrotechnic initiator realized by integrating Ti/CuO-based reactive multilayer films [J]. Journal of Applied Physics, 2011, 109(8): 084523.
[55]ZHANG D, XIANG Q. Electrophoretic fabrication of an Al-Co3O4 reactive nanocomposite coating and its application in a microignitor [J]. Industrial & Engineering Chemistry Research, 2016, 55(30): 8243-8247.
[56]ZHANG D, XIANG Q, LI X. Highly reactive Al-Cr2O3 coating for electric-explosion applications [J]. RSC Advances, 2016, 6(103): 100790-100795.
[57]ZHANG Y, JIANG H, ZHAO X, et al. Fabrication and characteristics of Al/PTFE multilayers and application in micro-initiator [J]. IOP Conference Series: Materials Science and Engineering, 2017, 275(1): 012045.
[58]YU C, ZHENG Z, GU B, et al. Aluminum/lead tetroxide nanothermites for semiconductor bridge applications [J]. Chemical Engineering Journal, 2023, 451: 138614.
[59]HUANG Y, DAI S, SUN T, et al. Thermal analysis of sodium azide and its mixtures [J]. Thermochimica Acta, 1996, 284(2): 441-444.
[60]SAID A A, ALQASIMI R. Thermal decomposition of sodium azide catalysed by NiO-Co3O4 solids [J]. Journal of Materials Science Letters, 1992, 11: 266-268.
[61]POTVIN H, BACK M H. A study of the decomposition of sodium azide using differential thermal analysis [J]. Canadian Journal of Chemistry, 1973, 51(2): 183-186.
[62]HASUE K, IWAMA A, KAZUMI T. Combustion aspects of sodium azide and its mixtures with potassium perchlorate and burning catalysts [J]. Propellants, Explosives, Pyrotechnics, 1991, 16(5): 245-252.
[63]KHANDHADIA P S, BURNS S P. Thermally stable nonazide automotive airbag propellants: US,6306232[P], 2001.
[64]CHAVEZ D E, HISKEY M A. 1, 2, 4, 5-tetrazine based energetic materials [J]. Journal of Energetic Materials, 1999, 17(4): 357-377.
[65]KIM S B, KIM K J, CHO M H, et al. Micro- and nanoscale energetic materials as effective heat energy sources for enhanced gas generators [J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9405-9412.
[66]JIAN G, FENG J, JACOB R J, et al. Super-reactive nanoenergetic gas generators based on periodate salts [J]. Angewandte Chemie International Edition, 2013, 52(37): 9743-9746.
[67]MARTIROSYAN K S, LYSHEVSKI S E. MEMS technology microthrusters and nanoenergetic materials for micropropulsion systems [C]∥2012 2nd International Conference “Methods and Systems of Navigation and Motion Control”(MSNMC). New York:IEEE, 2012: 133-136.
[68]PUCHADES I, HOBOSYAN M, FULLER L F, et al. MEMS microthrusters with nanoenergetic solid propellants [C]∥14th IEEE International Conference on Nanotechnology. New York:IEEE, 2014: 83-86.
[69]王飞. 平板式微推力器结构设计及药剂性能研究[D]. 南京: 南京理工大学, 2018.
WANG Fei. Structural design and propellant performance of a horizontal micro-thruster [D]. Nanjing: Nanjing University of Science and Technology, 2018.
[70]PUCHADES I, FULLER L F, LYSHEVSKI S E, et al. MEMS and 3D-printing microthrusters technology integrated with hydroxide-based nanoenergetic propellants [C]∥37th International Conference on Electronics and Nanotechnology(ELNANO). New York:IEEE, 2017: 67-70.
[71]HOBOSYAN M, MARTIROSYAN K S, LYSHEVSKI S E. Design and evaluations of 3D-printed microthrusters with nanothermite propellants [C]∥2018 IEEE 38th International Conference on Electronics and Nanotechnology(ELNANO). New York:IEEE, 2018: 478-482.
[72]黄辉, 王泽山, 黄亨建, 等. 新型含能材料的研究进展[J]. 火炸药学报, 2005,28(4): 9-13.
HUAN Hui, WANG Ze-shan, HUANG Heng-jian, et al. Research and progress of novel energetic materials[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2005,28(4): 9-13.
[73]李秀丽. 基于燃烧和爆炸效应的温压药剂相关技术研究[D]. 南京: 南京理工大学, 2008.
LI Xiu-li. Study on correlative techniques of thermobaric explosive based on combustion and explosion effect [D]. Nanjing: Nanjing University of Science and Technology, 2008.
[74]宋浩宇, 李晨阳, 安崇伟, 等. 硼/氧化铜延期药线燃烧性能及延期性能研究[J]. 火炸药学报, 2022, 45(5): 722-729.
SONG Hao-yu, LI Chen-yang, AN Chong-wei, et al. Study on combustion and delay performance of B/CuO delay compositions[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2022, 45(5): 722-729.
[75]GUO S, FOCKE W W, Tichapondwa S M. Sn/Mn/Bi2O3 ternary pyrotechnic time delay compositions[J]. ACS Sustainable Chemistry & Engineering, 2020, 38(8): 14524-14530.
[76]HOBOSYAN M, LYSHEVSKI S E, MARTIROSYAN K S. Integrated micropropulsion systems with nanoenergetic propellants[J].Nanomaterials in Rocket Propulsion Systems, 2019: 403-420.
[77]STALEY C S, RAYMOND K E, THIRUVENGADATHAN R, et al. Effect of nitrocellulose gasifying binder on thrust performance and high-g launch tolerance of miniaturized nanothermite thrusters [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(3): 374-382.
[78]安亭, 赵凤起, 郝海霞, 等. 铝热剂对双基推进剂激光点火特性的影响[J]. 火炸药学报, 2011, 34(1): 67-72.
AN Ting, ZHAO Feng-qi, HAO Hai-xia, et al. Effect of thermites on laser ignition characteristics of double base propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2011, 34(1): 67-72.
[79]安亭, 赵凤起, 裴庆, 等. 超级铝热剂对双基推进剂燃烧性能的影响[J]. 固体火箭技术, 2012, 35(6): 773-777.
AN Ting, ZHAO Feng-qi, PEI Qing, et al. Effects of super thermites on combustion properties of double-base propellant[J]. Journal of Solid Rocket Technology, 2012, 35(6): 773-777.
[80]BERTHE J E, COMET M, SCHNELL F, et al. Propellants reactivity enhancement with nanothermites [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(6): 994-998.
[81]HIGA K T. Energetic nanocomposite lead-free electric primers [J]. Journal of Propulsion and Power, 2007, 23(4): 722-727.
[82]NI D B, DANG P Y, YU G Q, et al. An initiator integrated the AI/MoO3 multilayer nanothermite and bridge-wire electrode plug [C]∥Journal of Physics: Conference Series. IOP Publishing, 2020, 1507(4): 042011.
[83]YI Z, ANG Q, LI N, et al. Sulfate-based nanothermite: a green substitute of primary explosive containing lead [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8584-8590.
[84]YI Z, CAO Y, YUAN J, et al. Functionalized carbon fibers assembly with Al/Bi2O3: a new strategy for high-reliability ignition [J]. Chemical Engineering Journal, 2020, 389: 124254.
[85]GLAVIER L, NICOLLET A, JOUOT F, et al. Nanothermite/RDX-based miniature device for impact ignition of high explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(3): 308-317.
[86]COMET M, MARTIN C, KLAUMüNZER M, et al. Energetic nanocomposites for detonation initiation in high explosives without primary explosives [J]. Applied Physics Letters, 2015, 107(24): 243108.
[87]ELBASUNEY S, EL-SAYYAD G S, ISMAEL S, et al. Colloid thermite nanostructure: a novel high energy density material for enhanced explosive performance [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 31(2): 559-565.
[88]SILYAKOV S L, YUKHVID V I. Combustion of iron aluminum thermite with ammonium chloride and sodium hydrogen tarbonate [J]. Combustion, Explosion, and Shock Waves, 2015, 51(6): 656-658.
[89]SAPCHENKO I G, KOMAROV O N, ZHILIN S G, et al. The influence of alkali metal chlorides on the manufacturing process and steel properties in aluminothermic reduction of iron [J]. Procedia IUTAM, 2017, 23: 155-160.
[90]杨勇, 阎殿然, 董艳春, 等. 等离子喷涂Al-Fe2O3复合粉合成纳米陶瓷复合涂层[J]. 材料热处理学报, 2011, 32(S1): 136-139.
YANG Yong, YAN Dian-ran, DONG Yan-chun, et al. Nanostructured ceramic composite coating synthesized by plasma spraying Al-Fe2O3 composite powders[J]. Transactions of Materials and Heat Treatment, 2011, 32(S1): 136-139.
[91]XI W, PENG R L, WU W, et al. Al2O3 nanoparticle reinforced Fe-based alloys synthesized by thermite reaction [J]. Journal of Materials Science, 2011, 47(8): 3585-3591.
[92]XI W, WANG H, LI J, et al. A NiAl-and TiC-reinforced Fe-based nanocomposite prepared by the rapid-solidification thermite process [J]. Materials Science and Engineering: A, 2012, 541: 166-171.
[93]MYAGKOV V G, ZHIGALOV V S, BYKOVA L E, et al. Thermite synthesis and characterization of Co-ZrO2 ferromagnetic nanocomposite thin films [J]. Journal of Alloys and Compounds, 2016, 665: 197-203.
[94]AHMADI-BINAHRI A, ADELI M, ABOUTALEBI M R, et al. Implementation of thermite reactions in the production of advanced intermetallic-matrix composites: the case of Nb2O5/Al thermite mixture [J]. Metals and Materials International, 2021, 28(6): 1499-1507.
[95]李宇洋, 贺刚, 刘光华, 等. 超重力燃烧合成快速制备MgAl2O4陶瓷的研究[J]. 稀有金属材料与工程, 2015, 44(S1): 804-807.
LI Yu-yang, HE Gang, LIU Guang-hua, et al. Rapid preparation of MgAl2O4 ceramics by high-gravity combustion synthesis[J]. Rare Metal Materials and Engineering, 2015, 44(S1): 804-807.
[96]NEELY K E G K C, STRAUSS A M. Soldered copper lap joints using reactive material architectures as a heat source [J]. Manufacturing Letters, 2020, 24: 6-8.
[97]KIM K J, CHO M H, KIM S H. Effect of aluminum micro- and nanoparticles on ignition and combustion properties of energetic composites for interfacial bonding of metallic substrates [J]. Combustion and Flame, 2018, 197: 319-327.
[98]KIM J H, CHO M H, SHIM H M, et al. Fabrication and thermal behavior of Al/Fe2O3 energetic composites for effective interfacial bonding between dissimilar metallic substrates [J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 84-89.
[99]SUI H, HUDA N, SHEN Z, et al. Al-NiO energetic composites as heat source for joining silicon wafer[J]. Journal of Materials Processing Technology, 2020, 279: 116572.
[100]MONOGAROV K A, PIVKINA A N, GRISHIN L I, et al. Uncontrolled re-entry of satellite parts after finishing their mission in LEO: Titanium alloy degradation by thermite reaction energy [J]. Acta Astronautica, 2017, 135: 69-75.
[101]赵志斌. 基于纳米铝热剂的微自毁芯片制备研究[D]. 绵阳: 西南科技大学, 2022.
ZHAO Zhi-bin. Preparation of micro self-destruction chip based on nanothermite [D]. Mianyang: Southwest University of Science and Technology, 2022.
[102]SEVELY F, WU T, DE SOUSA F S F, et al. Developing a highly responsive miniaturized security device based on a printed copper ammine energetic composite [J]. Sensors and Actuators A: Physical, 2022, 346: 113838.
[103]NICOLLET A, SALVAGNAC L, BAIJOT V, et al. Fast circuit breaker based on integration of Al/CuO nanothermites [J]. Sensors and Actuators A: Physical, 2018, 273: 249-255.
[104]MARTIROSYAN K S. Nanoenergetic gas-generators: principles and applications [J]. Journal of Materials Chemistry, 2011, 21(26): 9400-9405.
[105]HOBOSYAN M, KAZANKSY A V, MARTIROSYAN K S. Nanoenergetic composite based on I2O5/Al for biological agent defeat [J]. TechConnect Briefs, 2012, 3: 599-602.
[106]WANG H, JIAN G, ZHOU W, et al. Metal iodate-based energetic composites and their combustion and biocidal performance [J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17363-17370.
[107]吴永胜. 一种手工自蔓延切割技术的研究[D]. 石家庄: 军械工程学院, 2009.
WU Yong-sheng. Research on a manual self-propagating cutting technology [D]. Shijiazhuang: Ordnance Engineering College, 2009.
[108]王森, 辛文彤, 吴永胜, 等. 高热剂对燃烧型切割弹切割性能影响的研究[J]. 热加工工艺, 2012, 41(13): 202-204.
WANG Sen, XIN Wen-tong, WU Yong-sheng, et al. Effect of thermite on cutting capability of combustion cutting ammunition[J]. Hot Working Technology, 2012, 41(13): 202-204.
[109]SONG J, GUO T, DING W, et al. Thermal reaction processes and characteristics of an Al/MnO2 pyrotechnic cutting agent based on residue analyses [J]. Materials and Technology, 2020, 54(3): 327-333.
[110]高强, 王宝兴, 汪长栓, 等. 烟火切割技术在油田井下金属管柱切割中的应用[J]. 工程爆破, 2015, 21(4): 50-53.
GAO Qiang, WANG Bao-xing, WANG Chang-shuan, et al. Application of the pyrotechnic cutting technology in the metal pipe cutting of oil field[J]. Engineering Blasting, 2015, 21(4): 50-53.
[111]DE SOUZA K M, DE LEMOS M J S, KAWACHI E Y. Thermodynamics of thermite reactions for a new thermal plug and abandonment process [J]. Continuum Mechanics and Thermodynamics, 2022, 34(1): 259-271.
[112]杨光, 谢兴华, 谢强, 等. 油田封堵专用铝热剂的制备与性能研究[J]. 爆破器材, 2023, 52(4): 44-50.
YANG Guang, XIE Xing-hua, XIE Qiang, et al. Preparation and performance of thermite specially used for oilfiled plugging[J]. Explosive Materials, 2023, 52(4): 44-50.
[113]PONGRATZ M B. History of Los Alamos participation in active experiments in space [J]. Frontiers in Physics, 2018, 6: 144.
[114]LOPEZ A, DRUKIER A, FREESE K, et al. New dark matter detectors using nanoscale explosives [J]. ArXiv Preprint ArXiv, 2014: 1403.8115.
[115]YU C, ZHANG W, GAO Y, et al. The super-hydrophobic thermite film of the Co3O4/Al core/shell nanowires for an underwater ignition with a favorable aging-resistance [J]. Chemical Engineering Journal, 2017, 338: 99-106.
[116]PUSZYNSKI J A, BULIAN C J, SWIATKIEWICZ J J. Processing and ignition characteristics of aluminum-bismuth trioxide nanothermite system [J]. Journal of Propulsion and Power, 2007, 23(4): 698-706.
[117]PICHOT V, COMET M, MIESCH J, et al. Nanodiamond for tuning the properties of energetic composites [J]. Journal of Hazardous Materials, 2015, 300: 194-201.
[118]FOLEY T, PACHECO A, MALCHI J, et al. Development of nanothermite composites with variable electrostatic discharge ignition thresholds [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(6): 431-434.
[119]YANG Y, WANG P, ZHANG Z, et al. Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions [J]. Scientific Reports, 2013, 3(1): 1-6.
[120]SIEGERT B, COMET M, MULLER O, et al. Reduced-sensitivity nanothermites containing manganese oxide filled carbon nanofibers [J]. The Journal of Physical Chemistry C, 2010, 114(46): 19562-19568.
[121]HUANG Z, WU Q, LI X, et al. Synthesis and characterization of nano-sized boron powder prepared by plasma torch [J]. Plasma Science and Technology, 2010, 12(5): 577.
[122]CHEN L, YOKEL R A, HENNIG B, et al. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature [J]. Journal of Neuroimmune Pharmacology, 2008, 3: 286-295.
[123]STRIGUL N, VACCARI L, GALDUN C, et al. Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri [J]. Desalination, 2009, 248(1-3): 771-782.
[124]SADIQ I M, PAKRASHI S, CHANDRASEKARAN N, et al. Studies on toxicity of aluminum oxide(Al2O3)nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp [J]. Journal of Nanoparticle Research, 2011, 13: 3287-3299.
PDF(2490 KB)

71

Accesses

0

Citation

Detail

段落导航
相关文章

/