MgH2粉尘爆炸的能量释放特性规律

张 云,赵懿明,许张归,赵凤起,徐司雨,裴 庆,徐 森,焦枫媛,吴星亮,贾宪振,曹卫国

火炸药学报 ›› 2022, Vol. 45 ›› Issue (6) : 898-904.

PDF(5083 KB)
  • 主管:中国科学技术协会

    主编:魏 卫

    ISSN 1007-7812

     
  • 主办:中国兵工学会与中国兵器工业第204研究所共同

    出版:《火炸药学报》 编辑部

    CN 61-1310/TJ

PDF(5083 KB)
火炸药学报 ›› 2022, Vol. 45 ›› Issue (6) : 898-904. DOI: 10.14077/j.issn.1007-7812.202206017

MgH2粉尘爆炸的能量释放特性规律

  • 张 云1,2,赵懿明2,许张归2,赵凤起1,徐司雨1,裴 庆1,徐 森3,焦枫媛2,吴星亮3,贾宪振1,曹卫国2
作者信息 +

Energy Release Characteristic Law of MgH2 Dust Explosion

  • ZHANG Yun1,2, ZHAO Yi-ming2, XU Zhang-gui2, ZHAO Feng-qi1, XU Si-yu1, PEI Qing1, XU Sen3, JIAO Feng-yuan2, WU Xing-liang3, JIA Xian-zhen1, CAO Wei-guo2
Author information +
文章历史 +

摘要

为了探究MgH2粉尘爆炸的能量释放特性规律,采用改进后的20L球爆炸泄放装置获取了其爆炸压力和火焰传播规律,并分析了现行的工业粉尘爆炸泄放标准对MgH2爆炸泄放安全设计的适用性。结果表明,密闭条件下,MgH2粉尘爆炸压力随粉尘浓度的升高呈现先增大后减小的趋势,在750g/m3时达到最大,爆炸指数为310.5MPa·m/s; 泄放条件下泄放压力和火焰持续时间主要受MgH2粉尘浓度影响; 导管对泄放有限制作用,当导管长度从30cm增至100cm时,球内最大压力和压力上升速率分别上升了5%和9%; NFPA 68设计标准在250、500、1000g/m3时对MgH2粉尘爆炸较为适用,但在750g/m3时,标准的预测值低于实验值。因此,仅通过现有的普通工业粉尘爆炸泄放标准对MgH2进行爆炸泄放安全设计存在一定的安全风险。

Abstract

To explore the energy release characteristic of MgH2 dust, a modified 20L sphere explosion venting device was used to obtain its explosion pressure and flame propagation. The applicability of the current industrial dust explosion venting standard to the safety design of MgH2 explosion venting was analyzed. The results show that under airtight conditions, with the increase in dust concentration, the explosion pressure of MgH2 dust increases first and then decreases, which reaches the maximum at 750g/m3 with an explosion index of 310.5MPa·m/s. The venting pressure and flame duration are mainly affected by the MgH2 dust concentration. The duct has a restrictive influence on the venting. With the duct length growing from 30cm to 100cm, the maximum pressure and the explosion pressure rise rate in the vessel increase by 5% and 9%, respectively. NFPA 68 design standard is more applicable to MgH2 dust explosion at 250, 500 and 1000g/m3. At 750g/m3, the predicted value of the standard is lower than the experimental value. Only through the existing general industrial dust explosion venting standards for MgH2 explosion safety design may have certain risks.

关键词

爆炸力学 / MgH2 / 储氢材料 / 爆炸压力 / 火焰传播 / 爆炸泄放 / 安全设计

Key words

explosion mechanics / MgH2 / hydrogen storage material / explosion pressure / flame propagation / explosion venting / safety design

引用本文

导出引用
张 云,赵懿明,许张归,赵凤起,徐司雨,裴 庆,徐 森,焦枫媛,吴星亮,贾宪振,曹卫国. MgH2粉尘爆炸的能量释放特性规律. 火炸药学报. 2022, 45(6): 898-904 https://doi.org/10.14077/j.issn.1007-7812.202206017
ZHANG Yun, ZHAO Yi-ming, XU Zhang-gui, ZHAO Feng-qi, XU Si-yu, PEI Qing, XU Sen, JIAO Feng-yuan, WU Xing-liang, JIA Xian-zhen, CAO Wei-guo. Energy Release Characteristic Law of MgH2 Dust Explosion. Chinese Journal of Explosives & Propellants. 2022, 45(6): 898-904 https://doi.org/10.14077/j.issn.1007-7812.202206017
中图分类号: TJ55    O38   

参考文献

[1] XUE B, MA H H, SHEN Z W, et al. Effect of TiH2 particle size and content on the underwater explosion performance of RDX-based explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 791-798.
[2]王润德, 杨涛, 徐司雨, 等. Al基复合含能材料的制备及燃烧性能研究[J]. 火炸药学报, 2021, 44(6): 789-799.
WANG Run-de, YANG Tao, XU Si-yu, et al. Preparation and combustion properties of Al based composite energetic materials[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2021, 44(6): 789-799.
[3]荣吉利, 赵自通, 冯志伟, 等. 黑索今基含铝炸药水下爆炸性能的实验研究[J]. 兵工学报, 2019, 40(11): 2177-2183.
RONG Ji-li, ZHAO Zi-tong, FENG Zhi-wei, et al. Experimental study of underwater explosion performance of RDX-based aluminized explosive[J]. Acta Armamentarii, 2019, 40(11): 2177-2183.
[4]张洋, 赵凤起, 徐司雨, 等. 金属氢化物在含能材料中的燃烧、热分解及应用研究进展(英文)[J]. 火炸药学报, 2021, 44(2): 120-129.
ZHANG Yang, ZHAO Feng-qi, XU Si-yu, et al. Combustion, thermal decomposition and application of metal hydride in energetic materials: an extensive literature survey[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2021, 44(2): 120-129.
[5]ZHONG K, NIU L L, ZHANG C Y. Atomic insight into the thermobaric effect of aluminized explosives[J]. FirePhysChem, 2022, 2(2): 191-198.
[6]DELUCA L T, GALFETTI L, SEVERINI F, et al. Physical and ballistic characterization of AlH3-based space propellants[J]. Aerospace Science and Technology, 2007, 11(1): 18-25.
[7]吴星亮, 徐飞扬, 王旭, 等. 含储氢材料的RDX基混合炸药能量输出特性[J]. 含能材料, 2021, 29(10): 964-970.
WU Xing-liang, XU Fei-yang, WANG Xu, et al. Energy output characteristics of RDX-based composite explosives containing hydrogen storage materials.[J]. Chinese Journal of Energetic Materials, 2021, 29(10): 964-970.
[8]张洋, 徐司雨, 赵凤起, 等. MgH2对含能材料点火燃烧性能影响的实验研究[J]. 火炸药学报, 2021, 44(4): 504-513.
ZHANG Yang, XU Si-yu, ZHAO Feng-qi, et al. Experimental study on the effect of MgH2 on ignition and combustion performance of energetic materials[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2021, 44(4): 504-513.
[9]XUE B, LIN M J, MA H H, et al. Energy performance and aging of RDX-based TiH2, MgH2 explosive composites[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(7): 671-678.
[10]CAO W, GUO W C, DING T, et al. Laser ablation of aluminized RDX with added ammonium perchlorate or ammonium perchlorate/boron/magnesium hydride[J]. Combustion and Flame, 2020, 221: 194-200.
[11]CAO W, SONG Q G, GAO D Y, et al. Detonation characteristics of an aluminized explosive added with boron and magnesium hydride[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(11): 1393-1399.
[12]程扬帆, 汪泉, 龚悦, 等. MgH2型复合敏化储氢乳化炸药的制备及其爆轰性能[J]. 化工学报, 2017, 68(4): 1734-1739.
CHENG Yang-fan, WANG Quan, GONG Yue, et al. Preparation and detonation properties of MgH2 type of composite sensitized emulsion explosives[J]. CIESC Journal, 2017, 68(4): 1734-1739.
[13]程扬帆, 颜事龙, 马宏昊, 等. 溶胶-凝胶法包覆储氢材料MgH2的性能研究[J]. 火炸药学报, 2015, 38(4): 67-70.
CHENG Yang-fan, YAN Shi-long, MA Hong-hao, et al. Study on the properties of hydrogen storage material MgH2 coated by sol-gel method[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(4): 67-70.
[14]程扬帆, 马宏昊, 沈兆武. MgH2对乳化炸药的压力减敏影响实验[J]. 爆炸与冲击, 2014, 34(4): 427-432.
CHENG Yang-fan, MA Hong-hao, SHEN Zhao-wu. Experimental research on pressure desensitization of emulsion explosive sensitized by MgH2[J]. Explosion and Shock Waves, 2014, 34(4): 427-432.
[15]曹卫国, 赵懿明, 吴星亮, 等. 悬浮态AlH3粉尘爆炸泄放过程能量输出规律[J]. 含能材料, 2021, 29(10): 985-992.
CAO Wei-guo, ZHAO Yi-ming, WU Xing-liang, et al. Energy output behaviors of suspended AlH3 dust in explosive venting[J]. Chinese Journal of Energetic Materials, 2021, 29(10): 985-992.
[16]YAO M, DING W, RAO G N, et al. Effects of MgH2/Mg(BH4)2 powders on the mechanical sensitivity of conventional explosive compounds[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3): 274-279.
[17]WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2(M=Mg, Ti, Zr)of energetic materials[J]. Defence Technology, 2021, 17(4): 1262-1268.
[18]CAO W G, LI W J, YU S, et al. Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container[J]. Fuel, 2021, 290: 120034.
[19]XU S, WANG J, WANG H S, et al. Hazard evaluation of explosion venting behaviors for aluminum powder/air fuels using experimental and numerical approach[J]. Powder Technology, 2020, 364: 78-87.
[20]ZHANG Y, CHEN R K, ZHAO M K, et al. Hazard evaluation of explosion venting behaviours for premixed hydrogen-air fuels with different bursting pressures[J]. Fuel, 2020, 268: 117313.
[21]NFPA 68. Standard on explosion protection by deflagration venting [S]. Quincy: National Fire Protection Association, 2013.
[22]CAO W G, LIU Y F, CHEN R K, et al. Pressure release characteristics of premixed hydrogen-air mixtures in an explosion venting device with duct[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8810-8819.
[23]YAN X Q, YU J L. Dust explosion venting of small vessels at the elevated static activation overpressure[J]. Powder Technology, 2014, 261: 250-256.
PDF(5083 KB)

文章所在专题

爆炸冲击与先进防护

9

Accesses

0

Citation

Detail

段落导航
相关文章

/