单原子催化剂的催化效果及其作为固体推进剂燃烧催化剂的应用前景分析

薛 妍,曲文刚,刘所恩,高红旭,牛诗尧,付青山,王 艳,陈锦芳,赵凤起

火炸药学报 ›› 2023, Vol. 46 ›› Issue (4) : 275-284.

PDF(7692 KB)
  • 主管:中国科学技术协会

    主编:魏 卫

    ISSN 1007-7812

     
  • 主办:中国兵工学会与中国兵器工业第204研究所共同

    出版:《火炸药学报》 编辑部

    CN 61-1310/TJ

PDF(7692 KB)
火炸药学报 ›› 2023, Vol. 46 ›› Issue (4) : 275-284. DOI: 10.14077/j.issn.1007-7812.202205005

单原子催化剂的催化效果及其作为固体推进剂燃烧催化剂的应用前景分析

  • 薛 妍1,2,曲文刚1,刘所恩2,高红旭1,牛诗尧1,付青山1,王 艳3,陈锦芳2,赵凤起1
作者信息 +

The Catalytic Effect of Single Atom Catalysts and Its Application Prospect in Solid Propellant

  • XUE Yan1,2,QU Wen-gang1,LIU Suo-en2,GAO Hong-xu1,NIU Shi-yao1,FU Qing-shan1,WANG Yan3,CHEN Jin-fang2,ZHAO Feng-qi1
Author information +
文章历史 +

摘要

随着先进火箭与导弹技术进一步发展,现有燃烧催化剂已经无法满足推进剂技术进一步向着高能、燃气清洁以及燃烧可控方向发展的需求,体现在催化效率不够高、催化选择性差以及缺乏催化模型3个方面。而单原子催化剂具有高催化活性和选择性、高稳定性和100% 原子利用率等显著优势,将单原子催化剂引入推进剂燃烧催化领域有望突破固体推进剂燃烧性能高效、精准调控这一瓶颈问题。主要介绍了单原子催化剂的制备方法和表征技术,分析了单原子燃烧催化剂在固体推进剂领域的作用效果,指出了单原子催化剂的优势所在,进一步结合现有燃烧催化剂研究经验,预测了单原子燃烧催化剂发展趋势,分别从微观结构多样化设计与构建方面丰富单原子燃烧催化剂体系以及从分子层面认知催化反应机理,明确固体推进剂单原子催化燃烧机制。附

Abstract

With the further development of advanced rocket and missile technology, existing combustion catalysts have been unable to meet the needs of propellant technology, which is further developing towards high energy, cleaned combustion gas and controlled combustion, which reflected in three aspects: low catalytic efficiency, poor catalytic selectivity and lacking of catalytic model. Single-atom catalysts have significant advantages such as high catalytic activity, selectivity, high stability and 100% atom utilization rate. The introduction of single-atom catalysts into the field of propellant combustion catalysis is expected to break through the bottleneck problem of high efficient and precise control of solid propellant combustion performance. The preparation method and characterization technique of single-atom catalysts were introduced, the effects of single-atom combustion catalysts in the field of solid propellant were analyzed, and the advantages of single-atom catalysts were pointed out. A reasonable prediction of the development trend of single-atom combustion catalysts combining the existing research experience of combustion catalysts were further made: enriching the single-atom combustion catalyst system from the aspects of diversified design and construction of microstructure and understanding the catalytic reaction mechanism from the molecular level, to clarify the single-atom catalytic combustion mechanism of solid propellant. 63 References were attched.

关键词

物理化学 / 固体推进剂 / 单原子催化剂 / 燃烧催化剂 / 热分解 / 应用前景

Key words

physical chemistry / solid propellant / single atom catalysts / combustion catalyst / thermal decomposition / application prospect

引用本文

导出引用
薛 妍,曲文刚,刘所恩,高红旭,牛诗尧,付青山,王 艳,陈锦芳,赵凤起. 单原子催化剂的催化效果及其作为固体推进剂燃烧催化剂的应用前景分析. 火炸药学报. 2023, 46(4): 275-284 https://doi.org/10.14077/j.issn.1007-7812.202205005
XUE Yan,QU Wen-gang,LIU Suo-en,GAO Hong-xu,NIU Shi-yao,FU Qing-shan,WANG Yan,CHEN Jin-fang,ZHAO Feng-qi. The Catalytic Effect of Single Atom Catalysts and Its Application Prospect in Solid Propellant. Chinese Journal of Explosives & Propellants. 2023, 46(4): 275-284 https://doi.org/10.14077/j.issn.1007-7812.202205005
中图分类号: TJ55    V512   

参考文献

[1] 李上文, 赵凤起, 袁潮,等. 国外固体推进剂研究与开发的趋势[J]. 固体火箭技术, 2002, 25(2): 36-42.
LI Shang-wen, ZHAO Feng-qi, YUAN Chao, et al. Tendency of research and development for overseas solid propellants[J]. Journal of Solid Rocket Technology, 2002, 25(2): 36-42.
[2]SINGH H, SHEKHAR H. Solid Rocket Propellants: Science and Technology Challenges[M]. Cambridge: Royal Society of Chemistry, 2016.
[3]赵凤起,仪建华,安亭,等. 固体推进剂燃烧催化剂[M].北京:国防工业出版社,2016.
[4]刘萌,李笑江,严启龙,等.新型燃烧催化剂在固体推进剂中的应用研究进展[J].化学推进剂与高分子材料,2011, 9(2): 29-33.
LIU Meng, LI Xiao-jiang, YAN Qi-long, et al. Research progress on application of new type of combustion catalysts in solid propellants[J]. Chemical Propellants & Polymeric Materials, 2011, 9(2): 29-33.
[5]王雅乐,卫芝贤,康丽.固体推进剂用燃烧催化剂的研究进展[J].含能材料,2015, 23(1): 89-98.
WANG Ya-le, WEI Zhi-xian, KANG Li. Progress on combustion catalysts of solid propellants[J]. Chinese Journal of Energetic Materials,2015, 23(1): 89-98.
[6]汪营磊,赵凤起,仪建华.固体火箭推进剂用燃烧催化剂研究新进展[J].火炸药学报,2012, 35(5): 1-8.
WANG Ying-lei, ZHAO Feng-qi, YI Jian-hua. New progress of study on combustion catalysts used for solid rocket propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2012, 35(5): 1-8.
[7]YAN Q L, ZHAO F Q, KUO K K, et al. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions[J]. Prog. Energ. Combust. Sci., 2016, 57: 75-136.
[8]袁志锋,王江宁,张超,等. 纳米材料对双基和改性双基推进剂燃烧性能的影响[J]. 火炸药学报,2013,36(3):69-72.
YUAN Zhi-feng, WANG Jiang-ning, ZHANG Chao, et al. Effects of nano-materials on combustion properties of DB and CMDB propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2013,36(3):69-72.
[9]TAYLOR R H. Solid propellant formations with controlled burn rate and reduced smoke: USP, 5334270[P].1994.
[10]UEDA A, EJIMA K, AZUMA M. Partial oxidation of propene over metal oxide catalysts pretreated with NO2[J]. Catal. Lett., 1998, 53:73-76.
[11]HAO G, XIAO L, HU Y, et al. Facile preparation of Cr2O3 nanoparticles and their use as an active catalyst on the thermal decomposition of ammonium perchlorate[J]. J. Energe. Mater., 2019, 37: 251-269.
[12]HAO G, ZHOU X, LIU X, et al. Catalytic activity of nano-sized CuO on AP-CMDB propellant[J]. J. Energe. Mater., 2019, 37: 484-495.
[13]HE W, LIU P J, GONG F Y, et al. Turning the reactivity of metastable intermixed composite n-Al/PTFE by polydopamine interfacial control[J]. ACS Appl. Mater. Interfaces., 2018, 38: 32849-32858.
[14]HE W, TAO B T, YANG Z J, et al. Mussel-inspired polydopamine-directed crystal growth of core-shell n-Al@PDA@CuO metastable intermixed composites[J]. Chemical Engineering Journal, 2019, 369: 1093-1101.
[15]齐晓飞, 张晓宏, 严启龙,等. 固体推进剂用纳米核壳型铝粉的制备及其应用研究进展[J]. 化工新型材料, 2012, 40(4):20-22.
QI Xiao-fei, ZHANG Xiao-hong, YAN Qi-long, et al. Advance for preparation and application of aluminum core-shell nanoparticles in solid rocket propellant[J]. New Chemical Materials, 2012, 40(4): 20-22.
[16]刘所恩, 陈锦芳, 潘葆,等. 新型螺压高能改性双基推进剂研究[J]. 兵工学报, 2015, 36(6):1123-1127.
LIU Suo-en, CHEN Jin-fang, PAN Bao, et al. Study of novel screw extruded high energy composite double-base propellant[J]. Acta Armamentarii, 2015, 36(6):1123-1127.
[17]CHEN M S, GOODMAN D W. The structure of catalytically active gold on titania[J]. Science, 2004, 306: 252-255.
[18]QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat. Chem., 2011, 3:634-641.
[19]BAYATSARMADI B, ZHENG Y, VASILEF A, et al. Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion[J]. Small, 2017, 13:1700191.
[20]ZHU C, FU S, SHI Q, et al. Single-atom electrocatalysts[J]. Angew. Chem. Int. Ed., 2017, 56:13944-13960.
[21]YANG X F, WANG A, QIAO B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Acc. Chem. Res., 2013, 46:1740-1748.
[22]HAN B, LANG R, QIAO B, et al. Highlights of the major progress in single-atom catalysis in 2015 and 2016[J]. Chinese Journal of Catalysis, 2017, 38: 1498-1507.
[23]WANG A Q, LI J, ZHANG T. Heterogeneous single-atom catalysis[J]. Nat. Rev. Chem., 2018, 2: 65-81.
[24]LIU P,ZHAO Y,QIN R X, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352: 797-800.
[25]LIN L, ZHOU W, GAO R, et al. Low temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544: 80-83.
[26]LUO Z, OUYANG Y, ZHANG H, et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution[J]. Nat. Commun., 2018, 9: 2120.
[27]HAN Y, WANG Y, CHEN W, et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction[J]. J. Am. Chem. Soc., 2017, 139: 17269-17272.
[28]YANG H, SHANG L, ZHANG Q, et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts[J]. Nat Commun, 2019, 10: 1-9.
[29]GEORGE S M. Atomic layer deposition: an overview[J]. Chem. Rev., 2010, 110: 111-131.
[30]CHENG N, SUN X. Single atom catalyst by atomic layer deposition technique[J]. Chin. J. Catal., 2017, 38: 1508-1514.
[31]SUN S H, ZHANG G X, GAUQUELIN N, et al. Single-atom catalysis using Pt/Graphene achieved through atomic layer deposition[J]. Sci. Rep., 2013, 3: 1775-1783.
[32]DENG D, CHEN X, YU L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature[J]. Sci. Adv., 2015, 1: e1500462.
[33]HAN G, LI F, ALEXANDRE I, et al. Abrading bulk metal into single atoms[J]. Nat. Nanatechnol, 2022, 17: 403-407.
[34]HE X, DENG Y, ZHANG Y, et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts[J]. Cell Reports Physical Science, 2020, 22: 100004.
[35]JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353: 150-154.
[36]LIU P, ZHAO Y, QIN R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352: 797-800.
[37]ZHAO S, WANG T, ZHOU G, et al. Controlled one-pot synthesis of nickel single atoms embedded in carbon nanotube and graphene supports with high loading[J]. Chem Nano Mat, 2020, 6: 1063-1074.
[38]PENNYCOOK S J, CHISHOLM M F, LUPINI A R, et al. Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems[J]. Phil. Trans. R. Soc. A, 2009, 367: 3709-3733.
[39]NELLIST P D, PENNYCOOK S J. Direct imaging of the atomic configuration of ultradispersed catalysts[J]. Science, 1996, 274: 413-415.
[40]UZUN A, ORTALAN V, HAO Y, et al. Nanoclusters of gold on a high-area support: almost uniform nanoclusters imaged by scanning transmission electron microscopy[J]. ACS Nano, 2009, 3: 3691-3695.
[41]ORTALAN V, UZUN A, GATES B C, et al. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite[J]. Nature Nanotech, 2010, 5: 506-510.
[42]WANG Y, MAO J, MENG X, et al. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications[J]. Chem. Rev., 2019, 119: 1806-1854.
[43]DAUERMAN L, TAJIMA Y. Solid-phase reactions of a double-base propellant[J]. AIAA Journal, 1968, 6: 678-683.
[44]SUH N P, ADAMS G F, LENCHITZ C. Observations on the role of lead modifiers in super-rate burning of nitrocellulose propellants[J]. Combustion & Flame, 1974, 22: 289-293.
[45]HEWKIN D J, HICKS J A, POWLING J, et al. The combustion of nitric ester-based propellants: ballistic modification by lead compounds[J], Combustion Science and Technology, 1971, 2: 307-327.
[46]ZENG T, YANG R, LI J, et al. Thermal decomposition mechanism of nitroglycerin by ReaxFF reactive molecular dynamics simulations[J], Combust. Sci. Technol., 2021, 193: 470-484.
[47]LISETTE R W, WANG Z, COLIN R, et al. A review of the catalytic effects of lead-based ballistic modifiers on the combustion chemistry of double base propellants[J], Propellants, Explos., Pyrotech., 2021, 46: 13-25.
[48]QU W, NIU, SUN D, et al. Pb Single atoms enable unprecedented catalytic behavior for the combustion of energetic materials[J]. Adv. Sci., 2021, 8: 2002889.
[49]郭腾龙,唐南方,王庭鹏,等. 高负载量Cu1/Al2O3单原子催化剂的制备及其对AP热分解的影响[J]. 含能材料, 2021, 29(9): 811-818.
GUO Teng-long, TANG Nan-fang, WANG Ting-peng, et al. Preparation of high loading Cu1/Al2O3 single-atom catalyst and its effect on the thermal decomposition of AP[J]. Chinese Journal of Energetic Materials, 2021, 29(9): 811-818.
[50]PAPANIKOLAOU K G, STAMATAKIS M. The catalytic decomposition of nitrous oxide and the NO + CO reaction over Ni/Cu dilute and single atom alloy surfaces: first-principles microkinetic modelling[J]. Catal. Sci. Technol., 2021, 11: 3681-3696.
[51]ZHAO X, CONG Y, Lü F, et al. Mullite-supported rhcatalyst: a promising catalyst for the decomposition of N2O propellant[J]. Chem. Commun., 2010, 46: 3028-3030.
[52]ZHOU S, ZHOU X, TANG G, et al. Differences of thermal decomposition behaviors and combustion properties between CL-20-based propellants and HMX-based solid propellants[J]. J Therm Anal Calorim, 2020, 140: 2529-2540.
[53]WANG L, HUANG L, LIANG F, et al. Preparation, characterization and catalytic performance of single-atom catalysts[J]. Chinese Journal of Catalysis, 2017, 38: 1528-1539.
[54]洪伟良,赵凤起,刘剑洪,等. 纳米PbO和Bi2O3粉的制备及对推进剂燃烧性能的影响[J]. 火炸药学报, 2001, 24(3): 7-9.
HONG Wei-liang, ZHAO Feng-qi, LIU Jian-hong, et al. Synthesis of nanometer PbO,Bi2O3 and their effect on burning properties of solid propellants[J], Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2001, 24(3): 7-9.
[55]ZHANG T, LI J, QIN Z, et al. Doping hematite with bismuth to enhance its catalytic and oxidizing properties[J]. Chemical Engineering Journal, 2021, 421: 129436.
[56]WANG Y, ZHANG W, DENG D, et al. Two-dimensional materials confining single atoms for catalysis[J]. Chinese Journal of Catalysis, 2017, 38: 1443-1453.
[57]袁志锋,李军强,舒慧明,等. 纳米镍粉对改性双基推进剂综合性能的影响[J]. 含能材料,2019,27(9): 729-734.
YUAN Zhi-feng, LI Jun-qiang, SHU Hui-ming, et al. Effect of nano-Ni on overall properties of Al-CMDB and RDX/Al-CMDB propellants[J]. Chinese Journal of Energetic Materials, 2019, 27(9):729-734.
[58]齐晓飞,张晓宏,严启龙,等,纳米金属及其复合物在固体推进剂中的应用研究进展[J].化学推进剂与高分子材料, 2012, 10(1): 8.
QI Xiao-fei, ZHANG Xiao-hong, YAN Qi-long, et al. Research progress in applications of nano metals and their composites in solid propellants[J]. Chemical Propellants & Polymeric Materials, 2012, 10(1): 8.
[59]江治, 李疏芬, 赵凤起, 等. 纳米铝粉和镍粉对复合推进剂燃烧性能的影响[J]. 推进技术, 2004, 25(4): 368-372.
JIANG Zhi, LI Shu-fen, ZHAO Feng-qi, et al. Effect of nano aluminum and nickel powders on the combustion properties of composite propellant[J]. Journal of Propulsion Technology, 2004, 25(4): 368-372.
[60]范夕萍, 王霞, 刘子如, 等. 纳米Cu粉对HMX和 RDX热分解的催化作用[J]. 含能材料, 2005, 13(5): 284-287.
FAN Xi-ping, WANG Xia, LIU Zi-ru, et al. Catalysis of nano Cu powder on the thermal decomposition of HMX and RDX[J]. Chinese Journal of Energetic Materials, 2005, 13(5): 284-287.
[61]段红珍, 蔺向阳, 刘冠鹏, 等. 单分散钴纳米粒子的制备及其对二硝酰胺铵(ADN)的热分解作用[J]. 固体火箭技术, 2008, 31(3): 255-257.
DUAN Hong-zhen, LIN Xiang-yang, LIU Guan-peng, et al. Preparation of monodispersed Co nanoparticles and its effect on the thermal decomposition of ammonium dinitramide[J]. Journal of Solid Rocket Technology, 2008, 31(3): 255-257.
[62]HAI X, XI S, MITCHELL S, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries[J]. Nature Nanotechnology, 2022, 17: 174-181.
[63]王正明, 赵凤起, 高红旭,等. 固体推进剂燃烧火焰诊断与模拟技术研究进展[J]. 火炸药学报, 2021, 44(5): 555-566.
WANG Zheng-ming, ZHAO Feng-qi, GAO Hong-xu, et al. Advances in combustion flame diagnoses and simulations of solid propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2021, 44(5): 555-566.
PDF(7692 KB)

27

Accesses

0

Citation

Detail

段落导航
相关文章

/