采用约束炸药中心电热丝点火实验,利用高速摄像机,拍摄了3种约束强度作用下PBX炸药点火后的微秒量级时间的反应演化过程; 分析了约束强弱对最终反应烈度和反应升级特征过程的影响。结果表明,约束作用强度越大,炸药点火后能达到的反应烈度越高,且反应升级速度更快; 点火后的反应演化过程大致经历了4个阶段:燃烧火焰驱动的裂纹扩展; 约束界面发生对流燃烧; 炸药基体断裂和破碎导致反应烈度急剧增大; 约束解体。其中,在裂纹扩展及燃烧火焰传播阶段,圆环约束作用主要通过影响炸药内部应力状态进而影响裂纹扩展和燃烧反应传播的过程; 在火焰达到约束界面并沿界面传播阶段,约束圆环通过变形进而引导圆环与炸药的界面发生对流燃烧; 炸药基体的断裂和破碎将导致后续反应烈度进一步地快速增大。
Abstract
To capture the evolution behaviors of the reaction after ignition in microsecond time scale, a high-speed camera was applied in the electrically heating wire ignition experiment with the ignition point at center of the confined explosive charge. Then the influence of constraint strength on the final reaction intensity and the characteristic process of reaction escalation was investigated. The results show that the higher intensity and the faster reaction upgrading speed can be achieved as the restraint intensity increases. The reaction evolution process after ignition has roughly experienced four stages: crack propagation is driven by combustion flame; convective combustion occurs at the confined interface; fracture and fragmentation of explosive matrix lead to the sharp increase of reaction intensity; reaction extinction due to pressure relief. By influencing the internal stress state of the explosive at the crack extension and combustion flame propagation stages, the ring restraint influences the crack expansion and combustion flame proliferation. In addition, as the flame propagates along the ring interface, the ring restraint deforms, forcing the combustion flame into the interface between the ring and the explosive. Fracture and fragmentation of the explosive matrix will further escalate the intensity of the subsequent reaction.
关键词
爆炸力学 /
PBX炸药 /
反应烈度 /
约束强度 /
对流燃烧
{{custom_keyword}} /
Key words
explosion mechanics /
PBX /
reaction violence /
confinement strength /
convective burning
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ASAY B. Non-shock initiation of explosives[J]. Cancer, 2010, 109(12): 2466-2472.
[2]JACKSON S I, HILL L G, BERGHOUT H L, et al. Runaway reaction in a solid explosive containing a single crack[C]∥Proceedings of the 13th International Detonation Symposium. Norfolk: Office of Naval Research, 2006:646-655.
[3]BERGHOUT H L, SON S F, HILL L G, et al. Flame spread through cracks of PBX 9501(a composite octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based explosive)[J]. Journal of Applied Physics, 2006, 99(11):114901-114901-7.
[4]BERGHOUT H L, SON S F, ASAY B W. Convective burning in gaps of PBX 9501[J]. Symposium(International)on Combustion, 2000, 28(1):911-917.
[5]ANDREEVSKIKH L A, VAKHMISTROV S A, PRONIN D A, et al. Convective combustion in the slot of an explosive charge[J]. Combustion Explosion & Shock Waves, 2015, 51(6): 659-663.
[6]尚海林, 杨洁, 胡秋实,等. 炸药裂缝中的对流燃烧现象实验研究[J]. 兵工学报, 2019, 40(1):102-109.
SHANG Hai-lin, YANG Jie, HU Qiu-shi, et al. Experimental study on convective combustion in explosive cracks[J]. Acta Armamentarii, 2019, 40(1): 102-109.
[7]尚海林, 杨洁, 李涛,等. 约束HMX基PBX炸药裂缝中燃烧演化实验[J]. 含能材料, 2019, 27(12):1056-1061.
SHANG Hai-lin, YANG Jie, LI Tao, et al. Experimental study on burning evolution in confined HMX-bsaed PBX cracks [J] Chinese Journal of Energetic Materials, 2019, 27(12):1056-1061.
[8]尚海林,胡秋实,李涛,等. 炸药裂缝燃烧增压过程的一维理论[J]. 爆炸与冲击,2020,40(1):23-30.
SHANG Hai-lin, HU Qiu-shi, LI Tao, et al. One-dimensional theory for pressurization process in explosive crack burning [J]. Explosion and Shock, 2020,40(1): 23-30.
[9]DICKSON PM, ASAY B W, HENSON B F, et al. Thermal cook-off response of confined PBX 9501[J]. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 2004, 460(2052): 3447-3455.
[10]HOLMES MD, PARKER G R, BROILO R M, et al. The effect of quasi-static mechanical pre-load on deflagration violence in PBX 9501[C]∥AIP Conference Proceedings.NewYork: AIP Publishing, 2020, 2272(1): 100012.
[11]HOLMES M D, PARKER JR G R, HEATWOLE E M. et al. Fracture effects on explosive response(FEER); FY2018 Report [R]. Los Alamos: Los Alamos National Laboratory, 2018.
[12]胡海波, 傅华, 李涛,等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展[J]. 爆炸与冲击, 2020, 40(1): 011401.
HU Hai-bo, FU Hua, LI Tao, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion and Shock Waves, 2020, 40(1): 011401.
[13]郭应文. 压装 PBX反应烈度演化主导机制的实验研究[D]. 绵阳:中国工程物理研究院, 2017.
GUO Ying-wen. Experimental study on the dominant mechanism of reaction intensity evolution of pressed PBX[D]. Mianyang: China Academy of Engineering Physics, 2017.
[14]HU H, GUO Y, LI T, et al. Reactive behavior of explosive billets in deflagration tube of varied confinements[C]∥AIP Conference Proceedings.NewYork: AIP Publishing, 2018, 1979(1): 150020.
[15]LI T, GUO Y W, FU H, et al. Reaction cracks and pressurization of a pressed HMX-based PBX under high confinement [C]∥49th International Annual Conference of ICT.Karlsruhe: ICT,2018.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}