为了提高GAP微烟推进剂的力学性能,通过在GAP微烟推进剂中引入适量的PBT黏合剂进行复配,研究了增塑剂种类、增塑剂与黏合剂质量比(增塑比)、扩链剂种类及其官能度、扩链剂含量、固化剂种类以及固化参数对推进剂宽温域(-55℃~+70℃)力学性能的影响。结果表明,添加Bu-NENA增塑剂,可极大地改善推进剂的低温力学性能以及降低推进剂的玻璃化转变温度Tg,并在此基础上通过调节增塑剂与黏合剂增塑比为2.0,叠氮黏合剂/三官能度PET质量比为5:1; 采用TDI为固化剂以及固化参数Rt为1.2时,可使推进剂的Tg不大于-60℃以及在-55℃~+70℃范围内具有良好的力学性能,即在+70℃时抗拉强度大于0.50MPa,-55℃~+70℃时最大伸长率大于45%。
Abstract
In order to improve the mechanical properties of GAP low smoke propellant, the influencing factors including the type of plasticizer, the ratio of plasticizer and binder, the types of chain extender and functionality, the content of chain extender, the curing agent and curing parameters on the mechanical properties at a broad temperature range(-55℃—+70℃)of propellant were studied through adding moderate mass fraction of PBT binder in the GAP low smoke propellant. The results indicate that addition of Bu-NENA plasticizer can improve the mechanical properties of propellant at low temperature and lower the glass transition temperature of propellant. Based on this, the ratio of plasticizer and binder is 2.0, the ratio of azide binder and tri-functional PET binder is 5:1, TDI as the curing agent and the curing parameter is 1.2, the glass transition temperature of propellant is reduced lower than -60℃, and the propellant shows a good mechanical property between -55℃ and 70℃. The tensile strength at 70℃ is higher than 0.5MPa, and the maximum elongation is higher than 45%.
关键词
物理化学 /
叠氮微烟推进剂 /
玻璃化温度 /
力学性能 /
GAP
{{custom_keyword}} /
Key words
physical chemistry /
azide low smoke propellant /
glass transition temperature /
mechanical property /
GAP
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHENG Tian-ze. Review of novel energetic polymers and binders-high energypropellantin gredients for the new space race[J]. Aericle in Designed Monomers & Polumers, 2019, 22(1): 54-65.
[2]WANG Song, LIU Chang-hua, GUO Xiang, et al. Effects of crosslinking degree andcarbon nanotubes as filler on composites based on glycidyl azide polymer andpropargyl-terminated polyether for potential solid propellant application[J]. J. Appl Polym Sci, 2017:45359-45368.
[3]ZHANG Wei, REN Hui, SUN Ya-lun, et al. Effects of ester-ter-minated glycidyl azidepolymer on the thermal stability and decomposition of GAP by TG-DSC-MS-FTIR and VST[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(3): 1883-1892.
[4]杨秋秋,蔡如琳,徐胜良,等.原位拉伸扫描电镜法研究GAP推进剂的损伤行为[J].火炸药学报,2019,42(5):511-515.
YANG Qiu-qiu, CAI Ru-lin, XU Sheng-liang, et al. Damage behavior of GAP solid propellant by in-situ tensile SEM method[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2019,42(5):511-515.
[5]肖立柏,任晓宁,高红旭,等.微量热法研究GAP与BPS固化反应[J].火炸药学报,2021,44(1):50-54.
XIAO Li-bai,REN Xiao-ning,GAO Hong-xu,et al. Study on curing reaction of GAP and BPS by microcalorimetry[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2021,44(1):50-54.
[6]邱少君,蔚红建,崔燕军,等. 叠氮聚氨酯弹性体(Ⅰ)分子间作用力对力学性能的影响[J]. 推进技术,2000,21(2):81-83.
QIU Shao-jun, YU Hong-jian, CUI Yan-jun, et al. Azide polyurethane elastomer(Ⅰ): Effect of intermolecular force on mechani-cal properties[J]. Journal of Propusion Techmology, 2000, 21(2): 81-83.
[7]翟进贤,杨荣杰,朱立勋,等. BAMO-THF复合推进剂能量特性计算与分析[J]. 含能材料,2009,17(1):73-78.
ZHAI Jin-xian, YANG Rong-jie, ZHU Li-xun, et al. Calculation and analysis on energy characteristics of composite BAMO-THF propellants[J]. Chinese Journal of Energetic Materials, 2009,17(1): 73-78.
[8]刘栓虎,程根旺,骆广梁. 高能推进剂钝感含能材料研究现状[J]. 化学推进剂与高分子材料,2010,8(2):5-10.
LIU Shuan-hu, CHENG Gen-wang, LUO Guang-liang. Research status of insensitive energetic materials used in high-energy propellant[J]. Chemical Propellants & Polymeric Materials, 2010, 8(2): 5-10.
[9]周水平,王艳萍,唐根,等. 黏合剂固化网络参数对叠氮聚醚推进剂低温性能的影响[J]. 化学推进剂与高分子材料,2017, 15(5):49-54.
ZHOU Shui-ping, WANG Yan-ping, TANG Gen, et al. Influence of binder curing network parameters on cryogenic performance of azido polyether propellant[J]. Chemical Propellants & Polymeric Materials, 2017, 15(5):49-54.
[10]周水平,吴芳,唐根,等. 含能交联剂对PBT高能推进剂力学性能的影响[J]. 化学推进剂与高分子材料,2016,14(4):54-59.
ZHOU Shui-ping, WU Fang, TANG Gen, et al. Influence of energetic crosslinking agents on mechanical performance of PBT-based high energy propellants[J]. Chemical Propellants & Polymeric Materials, 2016,14(4):54-59.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}