近地空爆冲击波流场中三波点的轨迹预测方法

郗洪柱,孔德仁,彭泳卿,张世名,史 青,乐贵高

火炸药学报 ›› 2021, Vol. 44 ›› Issue (4) : 514-520.

PDF(1982 KB)
  • 主管:中国科学技术协会

    主编:魏 卫

    ISSN 1007-7812

     
  • 主办:中国兵工学会与中国兵器工业第204研究所共同

    出版:《火炸药学报》 编辑部

    CN 61-1310/TJ

PDF(1982 KB)
火炸药学报 ›› 2021, Vol. 44 ›› Issue (4) : 514-520. DOI: 10.14077/j.issn.1007-7812.202101005

近地空爆冲击波流场中三波点的轨迹预测方法

  • 郗洪柱1,2,孔德仁1,彭泳卿2,张世名2,史 青2,乐贵高1
作者信息 +

Prediction Method of Triple Point Trajectory in Shock Wave Flow Field of Near-earth Air Blast

  • XI Hong-zhu1,2,KONG De-ren1,PENG Yong-qing2,ZHANG Shi-ming2,SHI Qing2,LE Gui-gao1
Author information +
文章历史 +

摘要

为研究近地空爆冲击波流场中三波点的轨迹变化规律,基于镜像法构建三波点的几何约束,结合LAMB模型和多项式拟合法,得到了三波点的轨迹预测模型。首先,利用镜像法构造平齐于爆高的三波点的几何约束作为起始点,并计算入射角,与缩放系数相乘后作为预测模型的起始角。其次,根据三波点轨迹与起始点的几何关系构造轨迹预测方程。然后,利用不同爆高的已有三波点数据确定模型未知项参数。最后利用数值模拟结果、已有三波点数据及实爆试验数据评估模型的合理性,并同已有方法对比。结果表明,预测模型结果与实爆三波点位置更吻合,在比例爆高为0.35至1.42的工况下,预测模型在水平比例距离不大于10时输出的三波点轨迹更准确,可靠性高。

Abstract

To study the rule of the triple point(TP)trajectory in the shock wave flow field of the near-earth air blast, the TP path prediction model was obtained by the constructed TP geometric constraints from the mirror image method, combining with the LAMB model and the polynomial fitting method. First, the TP geometric constraint based on the explosion height is constructed as the starting point(SP)by the mirror image method. The starting angle of the prediction model is calculated by multiplying the incident angle and the scaling factor. Second, the trajectory prediction equation is constructed according to the geometrical relationship between the TP trajectory and the SP. Then, unknown parameters of the model are determined by the TP data at different explosion height. Finally, based on the numerical simulation results, the known TP data, and the real blasting data, the model verification is evaluated and compared with the existing methods. The results show that the prediction model results of triple point are consistent with the real blasting data. When the scaling explosion height is from 0.35 to 1.42 and the horizontal scaling distance is less than 10, the TP trajectory output by the prediction model is more accurate and reliable.

关键词

爆炸力学 / 近地空爆 / 镜像法 / LAMB / 三波点 / 轨迹预测

Key words

explosion mechanics / near-earth air blast / mirror image method / LAMB / triple point / trajectory prediction

引用本文

导出引用
郗洪柱,孔德仁,彭泳卿,张世名,史 青,乐贵高. 近地空爆冲击波流场中三波点的轨迹预测方法. 火炸药学报. 2021, 44(4): 514-520 https://doi.org/10.14077/j.issn.1007-7812.202101005
XI Hong-zhu,KONG De-ren,PENG Yong-qing,ZHANG Shi-ming,SHI Qing,LE Gui-gao. Prediction Method of Triple Point Trajectory in Shock Wave Flow Field of Near-earth Air Blast. Chinese Journal of Explosives & Propellants. 2021, 44(4): 514-520 https://doi.org/10.14077/j.issn.1007-7812.202101005
中图分类号: TJ55    O382.1   

参考文献

[1] 郭炜, 俞统昌, 金朋刚. 三波点的测量与实验技术研究[J]. 火炸药学报, 2007, 30(4): 55-57. GUO Wei, YU Tong-chang, JIN Peng-gang. Test of triple point and study on its test technology[J]. Chinese Journal of Explosives & Propellants(Huozhaoyao Xuebao), 2007, 30(4): 55-57.
[2]徐彬, 张寒虹, 陈志坚, 等. 球面激波在固壁的马赫反射[J]. 爆炸与冲击, 1988, 8(1): 25-28. XU Bin, ZHANG Han-hong, CHEN Zhi-jian. Mach reflection of spherical shock wave on rigid wall[J]. Explosion and Shock Waves, 1988, 8(1): 25-28.
[3]张学伦, 张团, 王昭明. 基于AUTODYN爆炸场三波点的数值模拟[J]. 四川兵工学报, 2015, 36(3): 17-19. ZHANG Xue-lun, ZHANG Tuan, WANG Zhao-ming. Numerical simulation on triple point explosion field with AUTODYN[J]. Journal of Ordnance Equipment Engineering, 2015, 36(3): 17-19.
[4]段晓瑜, 郭学永, 聂建新, 等. RDX基含铝炸药三波点高度的数值模拟[J]. 高压物理学报, 2018, 32(3): 035101. DUAN Xiao-yu, GUO Xue-yong, NIE Jian-xin, et al. Numerical simulation of the three-wave point of RDX-based aluminized explosives[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035101.
[5]曲艳东, 杨尚, 李思宇, 等. TNT炸药爆炸场中三波点的数值模拟[J]. 工程爆破, 2019, 25(1): 5-10. QU Yan-dong, YANG Shang, LI Si-yu, et al. Numerical simulation of triple point in the explosion field of TNT explosive[J]. Engineering Blasting, 2019, 25(1): 5-10.
[6]乔登江. 空中爆炸冲击波(I)基本理论[J]. 爆炸与冲击, 1985, 5(4): 78-85. QIAO Deng-jiang. Explosion waves in air(I)basic theory[J]. Explosion and Shock Waves, 1985, 5(4): 78-85.
[7]张玉磊, 袁建飞, 蒋海燕,等. TNT近地爆炸三波点高度预测及验证[J]. 爆破器材, 2020, 49(1): 29-33. ZHANG Yu-lei, YUAN Jian-fei, JIANG Hai-yan, et al. Prediction and verification of triple point height of near ground TNT explosion[J]. Explosive Materials, 2020, 49(1): 29-33.
[8]徐彬, 陈志坚, 郭长铭. 球面激波在固壁上马赫反射的数值计算及实验研究(I)[J]. 爆炸与冲击, 1987, 7(3): 223-229. XU Bin, CHEN Zhi-jian, GUO Chang-ming. Numerical computation and experiments of Mach reflection of spherical shock wave on rigid wall[J]. Explosion and Shock Waves, 1987, 7(3): 223-229.
[9]彭荣强. 几何激波动力学在激波绕射反射和聚焦中的应用[J]. 四川工业学院学报, 1996, 15(1): 50-54. PENG Rong-qiang. Application of geometrical shock dynamics in shock diffraction reflection and focus[J]. Journal of Sichuan Institute of Technology, 1996, 15(1): 50-54.
[10]WU Z, GUO J, YAO X, et al. Analysis of explosion in enclosure based on improved method of images[J]. Shock Waves, 2017, 27(2): 237-245.
[11]KONG B, LEE K, LEE S, et al. Indoor propagation and assessment of blast waves from weapons using the alternative image theory[J]. Shock Waves, 2016, 26(2): 75-85.
[12]NEEDHAM C E. Blast Waves[M]. 2th. New York: Springer, 2017.
[13]贾雷明, 王澍霏, 田宙. 爆炸冲击波反射流场的理论计算 方法[J]. 爆炸与冲击, 2019, 39(6): 064201. JIA Lei-ming, WANG Shu-fei, TIAN Zhou. A theoretical method for the calculation of flow field behind blast reflected waves[J]. Explosion and Shock Waves, 2019, 39(6): 064201.
[14]易仰贤. 空爆冲击波马赫反射近似计算[J]. 爆炸与冲击, 1983, 3(2): 44-49. YI Yang-xian. Approximate calculation of Mach reflection of explosive shock waves in air[J]. Explosion and Shock Waves, 1983, 3(2): 44-49.
[15]DOD U S. Structures to resist the effects of accidental explosions: UFC 3-340-02 with Change 2[R]. Washington D.C.: Department of Defense, 2014.
[16]石军磊,刘迎彬,胡晓艳, 等. 辅助药型罩材料对超聚能射流性能影响的数值模拟[J].火炸药学报, 2017, 40(1):69-74. SHI Jun-lei, LIU Ying-bin, HU Xiao-yan, et al. Numerical simulation of effect of material of additional liner on the performances of hypercumulation[J]. Chinese Journal of Explosives & Propellants(Huozhaoyao Xuebao), 2017, 40(1): 69-74.
[17]廖真, 唐德高, 李治中, 等. 近地面空中爆炸马赫反射数值模拟研究[J]. 振动与冲击, 2020, 39(5): 164-169. LIAO Zhen, TANG De-gao, LI Zhi-zhong, et al. Numerical simulation for Mach reflection in air explosion near ground[J]. Journal of Vibration and Shock, 2017, 40(1): 69-74.
[17]廖真, 唐德高, 李治中, 等. 近地面空中爆炸马赫反射数值模拟研究[J]. 振动与冲击, 2020, 39(5): 164-169. LIAO Zhen, TANG De-gao, LI Zhi-zhong, et al. Numerical simulation for Mach reflection in air explosion near ground[J]. 020, 39(5): 164-169.
PDF(1982 KB)

文章所在专题

爆炸冲击与先进防护

5

Accesses

0

Citation

Detail

段落导航
相关文章

/