机械粉碎法批量制备超细季戊四醇四硝基酯及其性能研究

郭双锋1,董 军1,2,郝嘎子3,刘巧娥4,高向东4

火炸药学报 ›› 2020, Vol. 43 ›› Issue (4) : 399-405.

PDF(2002 KB)
  • 主管:中国科学技术协会

    主编:魏 卫

    ISSN 1007-7812

     
  • 主办:中国兵工学会与中国兵器工业第204研究所共同

    出版:《火炸药学报》 编辑部

    CN 61-1310/TJ

PDF(2002 KB)
火炸药学报 ›› 2020, Vol. 43 ›› Issue (4) : 399-405. DOI: 10.14077/j.issn.1007-7812.201903004

机械粉碎法批量制备超细季戊四醇四硝基酯及其性能研究

  • 郭双锋1,董 军1,2,郝嘎子3,刘巧娥4,高向东4
作者信息 +

Massive Preparation and Characterization of Superfine PETN by Mechanical Ball Milling Method

  • GUO Shuang-feng1, DONG Jun1,2, HAO Ga-zi3, LIU Qiao-e4, GAO Xiang-dong4
Author information +
文章历史 +

摘要

为实现超细季戊四醇四硝酸酯(太安)的批量化和绿色制备,采用机械粉碎法,配合真空冷冻干燥技术,成功获得分散性良好、粒径在1~20μm分段可控的超细太安粉体; 作为对比,同时也采用溶剂-非溶剂重结晶法得到超细太安颗粒; 通过扫描电镜(SEM)、X射线衍射法(XRD)和傅里叶红外光谱(FTIR)表征样品的形貌结构,采用热重与差示扫描量热同步热分析仪(TG-DSC)研究样品的热分解性能,结合机械感度测试评价样品的安全性能。结果表明,与原料太安相比较,机械粉碎法制备的超细太安颗粒粒径在1μm左右,棱角大大减少,部分颗粒偏类球形,而重结晶法制备的超细太安颗粒平均粒径约11.4μm,呈片层状结构; 两种方法得到的太安晶型及分子结构均未发生改变,但放热峰温明显提前,活化能由104.1kJ/mol分别降至71.9kJ/mol和77.1kJ/mol,热爆炸临界温度由175.0℃分别降至138.1℃和149.1℃,热稳定性有所下降; 机械粉碎法制备的超细太安撞击感度下降24.8%,摩擦感度下降17.6%,而重结晶法得到的超细太安撞击感度增加29.7%,摩擦感度降低47.1%。采用机械粉碎法可实现超细太安的批量化、粒径可控、低成本及绿色制备。

Abstract

In order to achieve massive and green preparation of superfine pentaerythritol tetranitrate(PETN), mechanical ball-milling method and vacuum freeze drying technique were applied and superfine PETN powders with good dispersity and controllable particle sizes between 1-20μm were successfully prepared. At the same time, another kind of superfine PETN particles were produced through solvent/non-solvent recrystallization method as a comparison. The morphology and structure of the two kinds of superfine PETN samples were characterized by SEM, XRD and FTIR. The thermal decomposition characteristics were analyzed by a TG-DSC simultaneous thermal analyzer, and the impact sensitivity and friction sensitivity were tested. The results showed that the particle size of superfine PETN with greatly reduced edges prepared by mechanical ballmilling method was about 1μm, and some of the particles were spherical, while the average particle size of superfine PETN with flake-like structure prepared by recrystallization was about 11.4μm. Besides, the crystal and molecular structures of both two kinds of superfine PETN had no change compared with raw PETN. The thermal decomposition temperatures of superfine PETN prepared by two kinds of methods were shifted to lower temperatures. The activation energies were decreased from 104.1kJ/mol to 71.9kJ/mol and 77.1kJ/mol, respectively, and the critical temperatures of thermal explosion were reduced from 175.0℃ to 138.1℃ and 149.1℃, respectively, indicating that the thermal stabilities were decreased. The mechanical sensitivity tests revealed that the impact sensitivity of superfine PETN prepared by mechanical ball-milling method had a decrease of 24.8% and friction sensitivity had a decrease of 17.6%. While the impact sensitivity of superfine PETN prepared by recrystallization had an increase of 29.7% and friction sensitivity had a decrease of 47.1%. The massive, low-cost and green preparation of superfine PETN with controllable particle sizes can be realized by mechanical ballmilling method.

关键词

物理化学 / 超细季戊四醇四硝酸酯 / 太安 / 机械粉碎法 / 重结晶 / 热分解性 / 机械感度

Key words

physical chemistry / superfine pentaerythritol tetranitrate / PETN / mechanical ball-milling / recrystallization / thermal decomposition characteristics / mechanical sensitivities

引用本文

导出引用
郭双锋1,董 军1,2,郝嘎子3,刘巧娥4,高向东4. 机械粉碎法批量制备超细季戊四醇四硝基酯及其性能研究. 火炸药学报. 2020, 43(4): 399-405 https://doi.org/10.14077/j.issn.1007-7812.201903004
GUO Shuang-feng1, DONG Jun1,2, HAO Ga-zi3, LIU Qiao-e4, GAO Xiang-dong4. Massive Preparation and Characterization of Superfine PETN by Mechanical Ball Milling Method. Chinese Journal of Explosives & Propellants. 2020, 43(4): 399-405 https://doi.org/10.14077/j.issn.1007-7812.201903004
中图分类号: TJ55    O64   

参考文献

[1] 任特生. 硝胺及硝酸酯炸药化学与工艺学 [M]. 北京: 兵器工业出版社, 1994.
[2]余咸旱. 提高太安堆积密度的结晶工艺研究 [J]. 火炸药学报, 2002, 25(3): 37-39. YU Xian-han. Process research on crystalline to improve PETN bulk density [J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2002, 25(3): 37-39.
[3]王相元, 李伟明, 周小伟, 等. 重结晶工艺对太安撞击感度的影响 [J]. 火炸药学报, 2009, 32(2): 37-40 WANG Xiang-yuan, LI Wei-ming, ZHOU Xiao-wei, et al. Influences of recrystal technology on the impact sensitivity of PETN [J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2009, 32(2): 37-40.
[4]SONG X L, WANG Y, AN C W, et al. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-tetranitro-1,3,5,7-tetrazocine [J]. Journal of Hazardous Materials, 2008, 159(2/3): 222-229.
[5]ZOHARI N, KESHAVARZ M H, SEYEDSADJADI S A. The advantages and shortcomings of using nano-sized energetic materials [J]. Central European Journal of Energetic Materials, 2013, 10(1): 135-147.
[6]GUO X D, OU YANG G, LIU J, et al. Massive preparation of reduced-sensitivity nano CL-20 and its characterization [J]. Journal of Energetic Materials, 2015, 33(1): 24-33.
[7]刘杰, 李青, 曾江保, 等. 机械粉碎法制备不敏感纳米RDX [J]. 爆破器材, 2013, 42(3): 1-5. LIU Jie, LI Qing, ZENG Jiang-bao, et al. Mechanical pulverization for the production of sensitivity reduced nano-RDX [J].Chinese Journal of Explosive Materials, 2013, 42(3): 1-4.
[8]MIZIOLEK A W. Nanoenergetics: an emerging technology area of national importance [J]. The Amptiac Newsletter, 2002, 6(1): 43-48.
[9]SIVIOUR C, GIFFORD M, WALLEY S, et al. Particle size effects on the mechanical properties of a polymer bonded explosive [J]. Journal of Materials Science, 2004, 39(4): 1255-1258. [10]刘杰. 具有降感特性纳米硝胺炸药的可控制备及应用基础研究 [D]. 南京:南京理工大学, 2015. LIU Jie. Controlled preparation of lower sensitivity characterized nanometer nitramin explosives and their applying basic research [D]. Nanjing: Nanjing University of Science & Technology, 2015. [11]耿孝恒. PETN粒度对其机械感度的影响 [J]. 火炸药学报, 2012, 35(4): 30-32. GENG Xiao-heng. Influence of particle size on mechanical sensitivity of PETN [J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2012, 35(4): 30-32. [12]SONG X L, WANG Y, AN C W. Thermochemical properties of nanometer CL-20 and PETN fabricated using a mechanical milling [J]. AIP Advance,2018, 8(6): 065009. [13]KISSINGER H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry,1957, 29(11): 1702-1706. [14]ZHANG T L, HU R Z, XIE Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC [J]. Thermochimica Acta, 1994, 244: 171-176.
PDF(2002 KB)

文章所在专题

爆炸冲击与先进防护

Accesses

Citation

Detail

段落导航
相关文章

/