为了研究2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)基高聚物黏结炸药(PBX)的爆炸性能,拓展其在石油射孔、低易损炸药等相关军民领域的应用,分别以ANPyO为主体炸药,氟橡胶F2311、F2603和丁腈橡胶NBR-26为黏结剂,采用溶液-悬浮-蒸馏法制备了3种ANPyO基PBX炸药,测试其爆速和感度,并采用聚能装药形式进行了爆炸威力和钢靶射孔穿深试验。结果表明,3种ANPyO基PBX的爆速约为7300 m/s,机械感度较低,射孔深度均超过120 mm,高于典型钝感炸药,满足低易损炸药钝感高能的要求;其中丁腈橡胶(NBR-26)样品的射孔深度、入孔直径等参数均优于氟橡胶样品,且爆炸威力中侵彻体积为8701炸药的76.4%,聚能射流较8701炸药更集中。ANPyO基PBX的感度接近典型钝感炸药,爆炸性能接近高能混合炸药,表明ANPyO可以作为一种新型高能钝感含能材料。
Abstract
In order to study the explosion properties of 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO) based polymer binder explosive (PBX), and expand its application in the military and civil fields such as petroleum perforation and low vulnerability explosives, three kinds of ANPyO-based PBX explosives were prepared by solution-suspension-distillation method using ANPyO as the main explosive, fluororubber F2311, F2603 and nitrile rubber NBR-26 as binders and the detonation velocity and mechanical sensitivity were tested. The explosion power and perforation depth of steel target were determined by means of shaped charge. The results show that the detonation velocities of the three ANPyO-based PBXs are about 7300 m/s, the mechanical sensitivity are low,and the perforation depth are all higher than 120 mm, which are higher than that of the typical insensitive explosive and can meet the requirements of low-vulnerable explosives with insensitivity and high energy. The perforation depth and hand-hole diameter of NBR-26 sample are better than those of the fluororubber samples. The penetrating volume of NBR-26 sample is 76.4% of 8701 explosive in explosive power test, and the shaped charge jet is more concentrated than that of 8701 explosive. The mechanical sensitivity of ANPyO-based PBX is close to that of the typical insensitive explosive, and its explosion properties is close to that of the high-energy mixed explosive, indicating that ANPyO can be use as a new type of high-energy insensitive energetic material.
关键词
爆炸力学 /
2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO) /
爆速 /
爆炸威力 /
机械感度 /
PBX /
射孔弹 /
高聚物黏结炸药
{{custom_keyword}} /
Key words
explosion mechanics /
2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO) /
detonation velocity /
explosion power /
mechanical sensitivity /
PBX /
perforation projectile /
polymer binder explosive
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 成建龙, 孙宪宏, 乔晓光, 等. 油气井用火药的耐高温性能研究[J]. 测井技术, 2008, 32(2):95-99. CHENG Jian-long, SUN Xian-hong, QIAO Xiao-guang, et al. Research on high-temperature behavior of several kinds of powder for oil/gas well[J]. Well Logging Technology, 2008, 32(2):95-99.
[2] Jafari Mohammad, Ghani Kamal, Keshavarz Mohammad Hossein, et al. Assessing the detonation performance of new tetrazole base high energy density materials[J]. Propellants, Explosives, Pyrotechnics, 2018, 43:1-10.
[3] 石文艳, 王风云, 夏明珠, 等. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物晶体形貌的MD模拟[J]. 含能材料, 2016, 24(1):19-25. SHI Wen-yan, WAGN Feng-yun, XIA Ming-zhu, et al. Molecular dynamics simulation on the crystal morphology of 2,6-diamino-3,5-dinitropyridine-1-oxide[J]. Chinese Journal of Energetic Materials, 2016, 24(1):19-25.
[4] Pagoria P F, Lee G S, Mitchell A R, et al. A review of energetic materials synthesis[J]. Thermochim Acta, 2002, 384(1):187-204.
[5] 张蒙蒙, 王友兵, 周杰文, 等. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物的精制新方法[J]. 火炸药学报, 2017, 40(1):28-33. ZHANG Meng-meng, WANG You-bing, ZHOU Jie-wen, et al. A new method for refining 2,6-diamino-3,5-dinitropyridine-1-oxide[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2017, 40(1):28-33.
[6] 何志伟, 颜事龙, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物的热分解特性[J]. 火炸药学报, 2013, 36(6):51-54. HE Zhi-wei, YAN Shi-long, LIU Zu-liang. Thermal decomposition characteristics of 2,6-diamino-3,5-dinitropyridine-1-oxide[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2013, 36(6):51-54.
[7] 刘华宁, 郑宇, 邱从礼, 等. 新型炸药2,6-二氨基-3,5-二硝基吡啶-1-氧化物的射流冲击感度实验研究[J]. 含能材料, 2014, 22(3):337-342. LIU Hua-ning, ZHENG Yu, QIU Cong-li, et al. Experimental study on jet impact sensitivity of a new explosive 2,6-diamino-3,5-dinitropyridine-1-oxide[J]. Chinese Journal of Energetic Materials, 2014, 22(3):337-342.
[8] 周杰文, 张创军, 王友兵, 等. 耐热炸药的现状及研究进展[J]. 兵器装备工程学报, 2016, 37(3):111-115. ZHOU Jie-wen, ZHANG Chuang-jun, WANG You-bing, et al. Status and research progress of heat resistant explosives[J]. Journal of Ordnance Equipment Engineering, 2016, 37(3):111-115.
[9] 林聪妹,刘家辉,刘世俊,等. F2314/AS复合粘结剂与TATB界面作用的相关参数研究[J]. 含能材料,2014, 22(5):664-668. LIN Cong-mei, LIU Jia-hui, LIU Shi-jun, et al. Related parameters of interfacial interaction between F2314/AS composite binder and TATB[J]. Chinese Journal of Energetic Materials, 2014, 22(5):664-668.
[10] CHENG Jian, ZHANG Rong-xian, LIU Zu-liang, et al. Thermal decomposition mechanism of Co-ANPyO/CNTs nanocomposites and their application to the thermal decomposition of ammonium perchlorate[J]. Royal Society of Chemistry Advances, 2015, 62:50278-50288.
[11] ZHANG Rong-xian, ZHONG Xiao-sheng, LU Xiao-gang, et al. Synthesis, characterization and catalytic effect on thermal decomposition of AP:an eco-friendly energetic Bi(Ⅲ) complex of ANPyO[J]. Journal of Solid Rocket Technology, 2017, 40(4):448-455.
[12] 郭圣延, 徐永胜. 影响石油射孔弹穿孔深度的几个主要因素[J]. 测井技术, 2005, 29(增刊):52-54. GUO Sheng-yan, XU Yong-sheng. On several factors influencing on the perforator depths of shaped charges[J]. Well Logging Technology, 2005, 29(Supplement):52-54.
[13] 何志伟, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物为基的耐热混合炸药性能[J]. 含能材料, 2010, 18(1):97-101. HE Zhi-wei, LIU Zu-liang. Performance of 2,6-diamino-3,5-dinitropyridine-1-oxide based heat-resistance composite explosive[J]. Chinese Journal of Energetic Materials, 2010, 18(1):97-101.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}