以2,4,6,8,9,11-六氮[3,3,3]杂螺桨烷-3,7,10-三酮(PTO)为原料,通过与亲电试剂发生烷基化反应,获得了具有含能化衍生前景的六烯丙基六氮杂螺桨烷、六乙氧羰甲基六氮杂[3,3,3]螺桨烷和六羧甲基六氮杂螺桨烷;系统研究了不同亲电试剂与六氮杂[3,3,3]螺桨烷之间的反应活性,探讨了不同取代基六氮杂螺桨烷化合物的酸碱稳定性和热稳定性。结果表明,不同取代基结构对于六氮杂[3,3,3]螺桨烷的骨架修饰具有显著影响,亲电试剂活性的增加和溶剂极性的增大对反应有利,但过高活性的亲电试剂因副反应过多无法获得相应的烷基化产物;烷基化取代后的六氮杂[3,3,3]螺桨烷体系的水解稳定性大大增加,酸性条件下可保持稳定而碱性条件下多数烷基化产物发生降解;烷基化取代的产物其热稳定性较PTO有所增强。
Abstract
Taking 2,4,6,8,9,11-hexaaza[3,3,3] propellane-3,7,10-trione (PTO) as raw material, the reactivity of the hexaaza[3,3,3] propellane with different electrophilic reagents was systematically investigated. N-hexallyl-hexaaza[3,3,3] propellanes, N-hexethylacetic -hexaaza propellanes and N-hexacetoxyl-hexaaza[3,3,3] propellanes with energetic derivative prospect were designed and synthesized for the first time. The acid-stability, base-stability and thermal stability of hexaaza[3,3,3] propellane with different substituent were discussed. The results show that different substituent structure has significant effect on the modification of the hexaaza[3,3,3] propellane skeleton.Increasing the activity of electrophilic reagent and solvent polarity enhanced the reaction process, but extremely high activity failed to obtain the corresponding alkylation products due to the adverse reactions. The hydrolytic stability of the N-alkylated hexaaza[3,3,3] propellane system is greatly increased. Most of them remained stable under acidic conditions while decomposed under alkaline conditions. The thermal stability of the products was enhanced by alkylation compared with PTO.
关键词
六氮杂[3,3,3]螺桨烷 /
空间位阻 /
多位点 /
烷基化 /
三维立体骨架
{{custom_keyword}} /
Key words
hexaaza[3,3,3] propellane /
steric hindrance /
multiple reactive sites /
alkylation /
three-dimensional skeleton
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邢恩会, 米镇涛, 张香文. 用作新型高密度燃料的高张力笼状烃的研究进展[J]. 火炸药学报, 2004, 27(2):13-16.XING En-hui, MI Zhen-tao, ZHANG Xiang-wen, et al. Development of high strained caged hydrocarbons used as high density fuels[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2004,27(2):13-16.
[2] Tan B, Long X, Li J, et al. The cage strain energies of high-energy compounds[J]. Computational & Theoretical Chemistry,2012,993(8):66-72.
[3] Zhao G, Lu M. A theoretical investigation of a potential high energy density compound 3,6,7,8-tetranitro-3,6,7,8-tetraaza -tricyclo[3.1.1.1(2,4)]octane[J]. Química Nova,2013, 36(4):513-518.
[4] Zhang J Y, Wang F, Gong X D. A DFT study of cage compounds:3, 5, 8, 10, 11, 12-hexanitro-3, 5, 8, 10, 11, 12-hexaazatetracyclo[5.5.1.12,6.04,9] dodecane and its derivatives as high energetic materials[J]. Structural Chemistry, 2013, 24(4):1339-1346.
[5] Ju X, Wang Z. Prediction of caged polyaza polynitroamine (tetracyclo-HMX) as energetic compound[J]. Journal of Energetic Materials,2009, 27(2):133-143.
[6] Zhang Q, Shreeve J M. Metal-organic frameworks as high cxplosives:a new concept for energetic materials[J]. Angewandte Chemie International Edition,2014, 53(10):2540-2542.
[7] Nielsen A T. Caged polynitramine compound:US, Patent 5,693,794[P]. 1997-12-2.
[8] Nair U R, Sivabalan R, Gore G M, et al. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)[J]. Combustion Explosion & Shock Waves,2005, 41(2):121-132.
[9] 宋小兰,王毅,宋朝阳,等.CL-20/DNT共晶炸药的制备及其性能研究[J].火炸药学报,2016,39(1):23-27.SONG Xiao-lan, WANG Yi, SONG Zhao-yang, et al. Preparation of CL-20/DNT cocrystal explosive and study on its performance[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2016,39(1):23-27.
[10] 高寒,刘杰,郝嘎子,等.纳米CL-20的制备、表征和粉碎机理研究[J].火炸药学报,2015,38(2):46-49.GAO Han, LIU Jie, HAO Ga-zi, et al.Study on preparation, characterization and comminution mechanism of nano-sized CL-20[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015,38(2):46-49.
[11] Zhang M X, Eaton P E, Gilardi R. Hepta-and octanitrocubanes[J]. Angewandte Chemie International Edition,2000, 39(2):401-404.
[12] Hrovat D A, Borden W T, Eaton P E, et al. A computational study of the interactions among the nitro groups in octanitrocubane[J]. Journal of the American Chemical Society,2001, 123(7):1289-1293.
[13] 张俊林, 肖川, 翟连杰, 等. 多硝基氮杂稠环化合物的合成及性能, 有机化学[J], 2016, 36(6):1197-1207.ZHANG Jun-lin, XIAO Chuan, ZHAI Lian-jie, et al. Synthesis and properties of the fused aza-polynitrocyclic compounds[J]. Chinese Journal of Organic Chemistry,2016, 36(6):1197-1207.
[14] Zhang Q, Zhang J, Qi X, et al. Molecular design and property prediction of high density polynitro[3.3.3] -propellane-derivatized frameworks as potential high explosives[J]. Journal of Physical Chemistry A, 2014, 118(45):10857-10865.
[15] Shin M, Kim M H, Ha T H, et al. Synthesis of novel 2,4,6,8,10-pentaaza[3.3.3] propellane derivatives[J]. Tetrahedron, 2014, 70(8):1617-1620.
[16] Agrawal J P, Hodgson R D. Organic Chemistry of Explosives[M]. West Sussex:John Wiley & Sons, Ltd.,2007.
[17] Corey E J, Chaykovsky M. Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and dimethylsulfonium methylide ((CH3)2SCH2).Formation and application to organic synthesis[J]. Journal of the American Chemical Society, 2002, 87(6):1353-1364.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}