高海拔环境下运动装药的爆炸冲击波特性

李瑞,杨耀勇,汪泉,徐小猛,洪晓文

火炸药学报 ›› 2023, Vol. 46 ›› Issue (预出版) : 1.

  • 主管:中国科学技术协会

    主编:魏 卫

    ISSN 1007-7812

     
  • 主办:中国兵工学会与中国兵器工业第204研究所共同

    出版:《火炸药学报》 编辑部

    CN 61-1310/TJ

火炸药学报 ›› 2023, Vol. 46 ›› Issue (预出版) : 1. DOI: 10.14077/j.issn.1007-7812. 202305014

高海拔环境下运动装药的爆炸冲击波特性

  • 李瑞1,2,3,杨耀勇2,3,汪泉2,3,徐小猛2,3,洪晓文4

作者信息 +

Blast wave characteristics of moving charge at high -altitude environment

  • LI Rui1,2,3, YANG Yaoyong2,3, WANG Quan2,3, XU Xiaomeng2,3, HONG Xiaowen3
Author information +
文章历史 +

摘要

为了研究高海拔环境下运动装药的爆炸冲击波传播特性,利用AUTODYN有限元软件,研究了不同海拔高度及其解耦对应的低温条件和低压条件对运动装药爆炸冲击波超压场的影响规律,建立了预测低温环境和低压环境下运动装药爆炸冲击波超压的理论计算模型,并通过试验数据和数值模拟进行了对比验证。结果表明,该计算模型可以有效预测不同低温、低压以及低温和低压耦合的高海拔环境下运动装药的爆炸冲击波超压。运动装药爆炸冲击波超压峰值(冲击波作用范围)随海拔高度的升高而减小(增大),其中随环境压力的降低而减小(增大),随环境温度的降低略有增大(减小)。不同海拔高度下装药运动速度引起的冲击波超压增大系数变化规律与解耦对应的低压条件影响规律基本相似。高海拔环境对运动装药爆炸冲击波的作用范围及超压的影响主要取决于低压条件,低温条件的影响程度较小。

Abstract

The effects of varying altitudes above sea level and the isolated conditions of reduced pressure and diminished temperature on the blast wave parametersof moving charge were investigated employing the AUTODYN software. Additionally, a theoretical calculation model was developed to predict peak overpressure of the moving charge under diminished pressure and temperature. The model was validated subsequently through experimental data and numerical simulations. Results indicate that the model can assess the blast wave peak overpressure of moving charge at diminished temperature, reduced pressure and high -altitude environment effectively. The peak overpressure (action range) of the blast wave generated by the moving charge exhibits a decrease (increase) as altitude rises. This trend is accompanied by a decrease (or increase) in ambient pressure, while a decrease (or increase) in ambient temperature. The increase coefficient in blast wave overpressure resulting from the moving charge at various altitudes closely resembles that of diminished pressure. In high-altitude settings, the action range and overpressure of the blast wave generated by the explosion of moving charges are predominantly influenced by reduced pressure, whereas the impact of diminished temperature iscomparatively marginal

关键词

空中爆炸;爆炸冲击波;高海拔;低温环境;低压环境;运动装药

Key words

air blast / blast wave / high altitude / diminished pressure / diminished temperature / moving charge

引用本文

导出引用

李瑞,杨耀勇,汪泉,徐小猛,洪晓文

.
高海拔环境下运动装药的爆炸冲击波特性. 火炸药学报. 2023, 46(预出版): 1 https://doi.org/10.14077/j.issn.1007-7812. 202305014
LI Rui, YANG Yaoyong, WANG Quan, XU Xiaomeng, HONG Xiaowen. Blast wave characteristics of moving charge at high -altitude environment. Chinese Journal of Explosives & Propellants. 2023, 46(预出版): 1 https://doi.org/10.14077/j.issn.1007-7812. 202305014
中图分类号: TJ55    O382.1   

参考文献

[1] XUE Z Q, LI S, XIN C L, et al. Modeling of the whole process of shock wave overpressure of free-field air explosion[J]. Defence Technology, 2019, 15(5): 815-820.
[2] VELDMAN R L, NANSTEEL M W, CHEN C C T, et al. The effect of ambient pressure on blast reflected impulse and overpressure[J]. Experimental Techniques, 2017, 41(3): 227-236.
[3] 何翔, 杨建超, 王晓峰, 等. 常规战斗部动爆威力研究综述[J]. 防护工程, 2022, 44(1): 1-9.
HE X, YANG J C, WANG X F, et al. Overview of conventional warhead dynamic explosion power research[J]. Protective engineering, 2022, 44(1): 1-9. (In Chinese)
[4] PATTERSON J D, WENIG J. Air blast measurements around moving explosive charges: AD0033173[R]. Aberdeen: Army Ballistics Research Laboratory,1954.
[5] ARMENDT B F, SPERRAZZA J. Air blast measurements around moving explosive charges, Part Ⅲ: AD0114950[R]. Aberdeen: Army Ballistics Research Laboratory,1956.
[6] 蒋海燕, 李芝绒, 张玉磊, 等. 运动装药空中爆炸冲击波特性研究[J]. 高压物理学报, 2017, 31(3): 286-294.
JIANG H Y, Li Z R, ZHANG Y L, et al. Characteristics of air blast wave filed for explosive charge moving at different velocities[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 286-294. (In Chinese)
[7] Xu Q P, Su J J, Li Z R, et al. Air blast pressure characteristics of moving charge[J]. Journal of Physics: Conference Series, 2020, 1507(3): 1-12.
[8] 聂源, 蒋建伟, 李梅. 球形装药动态爆炸冲击波超压场计算模型[J]. 爆炸与冲击, 2017, 37(5): 951-956.
NIE Y, JIANG J W, LI M. Overpressure calculation model of sphere charge blasting with moving velocity [J]. Explosion and Shock Waves, 2017, 37(5): 951-956. (In Chinese)
[9] 陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究[J]. 爆炸与冲击, 2020, 40(1): 013201.
CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge[J]. Explosion and Shock Waves, 2020, 40(1): 013201. (In Chinese)
[10] 王良全, 商飞, 孔德仁. 静动爆冲击波数值仿真分析[J]. 兵器装备工程学报, 2020, 41(12): 208-213.
WANG L Q, SHANG F, KONG D R. Numerical Simulation Analysis of Static and Dynamic Shock Waves[J]. Journal of Ordnance Equipment Engineering, 2020, 41(12): 208-213. (In Chinese)
[11] MA X, KONG D, SHI Y. Measurement and Analysis of Shock Wave Pressure in Moving Charge and Stationary Charge Explosions [J]. Sensors, 2022, 22: 6582.
[12] 周至柔, 蒋海燕, 苏健军. 动爆冲击波场空间位置分布规律研究[J]. 兵器装备工程学报, 2023, 44(2): 15-21.
ZHOU Z R, JIANG H Y, SU J J. Study on spatial position distribution of a dynamic detonation shock wave field[J]. Journal of Ordnance Equipment Engineering, 2023, 44(2): 15-21. (In Chinese)
[13] SACHS R G. The dependence of blast on ambient pressure and temperature: 466 [R]. Aberdeen Proving Ground, MD, USA:Ballistic Research Laboratories, 1944.
[14] 李科斌, 李晓杰, 闫鸿浩, 等. 不同真空度下空中爆炸近场特性的数值模拟研究[J]. 振动与冲击, 2018, 37(17): 270-276.
LI K B, LI X J, YAN H H, et al. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum[J]. Journal of Vibration and Shock, 2018, 37(17):270-276.
[15] Wang L-Q, Kong D-R. Research on the distribution characteristics of explosive shock waves at different altitudes[J]. Defence Technology, 2023, 24: 340-348.
[16] CHEN L, Li Z, CHEN R, et al. Propagation characteristics of blast shock waves in low-pressure environment[J]. Shock Waves, 2023, 33(1): 61-74.
[17] GAO C, KONG X Z, FANG Q, et al. Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation[J]. Defence Technology, 2021, 18: 1662-1678.
[18] COWLER M S, VIRNBAUM N K. AUTODYN user Manual [M]. Oakland, USA: Century Dynamics Inc, 1989: 213-214.
[19] BORGNAKKE C, SONNTAG R E. Fundamentals of Thermodynamics[M]. 8ed Edition. New York: John Wiley & Sons, 2013.
[20] 李瑞,李孝臣,汪泉,等. 低温和低压环境下炸药爆炸冲击波的传播特性[J]. 爆炸与冲击, 2023, 43(2): 022301.
LI R, LI X C, WANG Q, et al. Propagation characteristics of blast wave in diminished ambient temperature and pressure environments[J]. Explosion and Shock Waves, 2023, 43(2): 022301.
[21] 钱翼稷. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2004.
QIAN Y J. Aerodynamics[M]. Beijing: BeiHang University Press, 2004. (in Chinese)
[22] IZADIFARD R A, FOROUTAN M. Blastwave parameters assessment at different altitude using numerical simulation[J]. Turkish Journal of Engineering and Environmental Sciences, 2010, 34: 25-41.
[23] UNITED STATES DEPARTMENT OF DEFENSE. Structures to resist the effects of accidental explosions: UFC 3-340-02[S]. Washington: US Army Armament Research and Development Command, 2008.
[24] 李志斌, 陈龙明, 陈荣, 等 一种高原爆炸冲击波等效测试系统及测试方法: CN 112378563 A[P]. 2021-02-19.

文章所在专题

爆炸冲击与先进防护

Accesses

Citation

Detail

李瑞,杨耀勇,汪泉,徐小猛,洪晓文

"/>
段落导航
相关文章

/