考虑应变率及密度影响的含铝PBX炸药本构模型

胡雪垚,沈飞,肖玮,屈可朋*

火炸药学报 ›› 2020, Vol. 43 ›› Issue (预出版) : 1-10.

PDF(342 KB)
  • 主管:中国科学技术协会

    主编:魏 卫

    ISSN 1007-7812

     
  • 主办:中国兵工学会与中国兵器工业第204研究所共同

    出版:《火炸药学报》 编辑部

    CN 61-1310/TJ

PDF(342 KB)
火炸药学报 ›› 2020, Vol. 43 ›› Issue (预出版) : 1-10. DOI: 10.14077/ j.issn.1007-7812.202007009

考虑应变率及密度影响的含铝PBX炸药本构模型

  • 胡雪垚,沈飞,肖玮,屈可朋*
作者信息 +

A Constitutive Model of Aluminized PBX Explosive Considering the Strain Rate and Density Effects

  • HU Xue-yao, SHEN Fei, XIAO Wei, QU Ke-peng*
Author information +
文章历史 +

摘要

为了揭示较宽应变率范围内,密度对某RDX基含铝PBX炸药压缩力学行为的影响规律,分别采用电子万能试验机和分离式Hopkinson压杆(SHPB)进行了准静态和动态压缩试验,获取了不同密度(1.65g/cm3、1.70g/cm3和1.74g/cm3)炸药在不同应变率(0.01/s、400/s、800/s和1300/s)下的压缩应力-应变行为。结果表明:该含铝PBX炸药的力学响应具有明显的应变率敏感性和密度依赖性。随着密度的增加,弹性模量和峰值应力基本呈线性增大,其中峰值应力的增速随应变率增加而减缓(74.9%、63.5%、44.5%及26.8%);随着对数应变率的增大,弹性模量和峰值应力均表现为指数递增趋势。考虑应变率和密度对材料弹性模量及峰值应力的影响,建立了含损伤的粘弹塑性本构模型,该模型能够准确描述较宽应变率范围内、不同密度条件下含铝PBX炸药的压缩应力-应变行为。

Abstract

To reveal the density effect on the compressive mechanical behavior of an RDX-based aluminized PBX explosive within a wide range of strain rate, quasi-static and dynamic compression tests are conducted using the Electronic universal testing machine and Split Hopkinson Pressure Bar (SHPB). The stress-strain curves are obtained at the different strain rates (0.01/s、400/s、800/s和1300/s) for explosives with different densities (1.65g/cm3、1.70g/cm3和1.74g/cm3). The results show that the mechanical behavior of aluminized PBX explosive exhibits obvious rate sensitivity and density dependence. With the increase of density, the elastic modulus and peak stress exhibit linear increasing trend. But the increasement of peak stress decreases with increasing loading rate (74.9%、63.5%、44.5% and 26.8%). With the increase of logarithmic strain rate, the elastic modulus and peak stress increase exponentially. Further, a damage viscoelastic plastic constitutive model considering the strain rate and density effects is developed, which is able to accurately describe the compressive stress-strain behavior of Aluminized explosive within a wide range of strain rate and at different densities

关键词

RDX基含铝PBX炸药;Hopkinson压杆;应变率;密度;本构模型

Key words

RDX-based aluminized PBX explosive / SHPB / strain rate / density / constitutive model

引用本文

导出引用
胡雪垚,沈飞,肖玮,屈可朋*. 考虑应变率及密度影响的含铝PBX炸药本构模型. 火炸药学报. 2020, 43(预出版): 1-10 https://doi.org/10.14077/ j.issn.1007-7812.202007009
HU Xue-yao, SHEN Fei, XIAO Wei, QU Ke-peng*. A Constitutive Model of Aluminized PBX Explosive Considering the Strain Rate and Density Effects. Chinese Journal of Explosives & Propellants. 2020, 43(预出版): 1-10 https://doi.org/10.14077/ j.issn.1007-7812.202007009
中图分类号: TJ55,O347.3   

参考文献

[1] 孙文旭, 罗智恒, 唐明峰,等. PBX-1炸药的力学性能和本构关系[J]. 爆炸与冲击, 2019, 39(7): 072301.
Sun Wen-xu, Luo Zhi-heng, Tang Ming-feng, et al. Compressive mechanical properties and constitutive relations of PBX-1[J]. Explosion and Shock Waves, 2019, 39(7): 072301.
[2] Bennett J G, Haberman K S, Johnson J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives[J]. Journal of the Mechanics & Physics of Solids, 1998, 46(12):2303-2322.
[3] Dienes J K, Kershner J D. Multiple-shock initiation via statistical crack mechanics[J]. office of scientific & technical information technical reports, 1998.
[4] Yang K, Wu Y Q, Huang F L. Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives[J]. Journal of Hazardous Materials, 2018, 356(15):34-52.
[5] Liu M, Huang X C, Wu Y Q, et.al. Numerical simulations of the damage evolution for plastic-bonded explosives subjected to complex stress states[J]. Mechanics of Materials, 2019, 139:103179.
[6] Liu J H, Yang Z J, Liu S J, et al. Effects of fluoropolymer binders on the mechanical properties of TATB-based PBX[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(7): 664-670.
[7] 王奥, 王彬彬, 徐滨,等. RDX粒度对改性单基药燃烧性能及力学性能的影响[J]. 火炸药学报, 2018, 41(2): 197-201.
Wang Ao, Wang Bin-bin, Xu Bin, et al. Effect of the Particle Size of RDX on Combustion and Mechanical Performance of Modified Single-base Gun Propellant[J]. Chinese Journal of Explosives and Propellants, 2018, 41(2): 197-201.
[8] 屈可朋, 沈飞, 肖玮,等. RDX基PBX炸药在被动围压下的力学性能[J]. 火炸药学报, 2014, 37(2):57-60. Qu Ke-peng, Shen Fei, Xiao wei. Mechanical Properties of RDX-based PBX Explosive under Passive Confined Pressure[J]. Chinese Journal of Explosives and Propellants, 2014, 37(2): 57-60.
[9] 陈荣, 卢芳云, 林玉亮, 等. 一种含铝炸药压缩力学性能和本构关系研究[J]. 含能材料, 2007, 15(5): 460-463.
Chen Rong, Lu Fang-yun, Lin Yu-liang, et al. Mechanical Behavior and Constitutive Model of Pressed Aluminized Explosive[J]. Chinese Journal of Energetic Materials. 2007, 15(5): 460-463.[10] 蔡宣明. PBX 炸药动态力学行为及起爆特性研究[D]. 哈尔滨工业大学, 2015.
Cai Xuan-ming. Study on Dynamic Mechanical Behavior and Initiation Characteristic of PBX[D]. Harbin Institute of Technology, 2015.
[11] Metals Handbook. Mechanical testing and evaluation. ASM international vol.8, 2000.
[12] Couque H, Boulanger R, Bornet F. A modified Johnson-Cook model for strain rates ranging from 10-3 to 105 s-1[J]. Journal De Physique Iv, 2006, 134(1): 87-93.
[13] Guo H, Guo W G, Zhai Y, et al. Experimental and modeling investigation on the dynamic response of granite after high-temperature treatment under different pressures. Construction and Building Materials, 2017, 155: 427-440.
[14] Matzenmiller A, Lubliner J, Taylor R L. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials, 1995, 20(2), 125-152.
[15] Mingshuang L, Yulong L, Fei X, et al. Dynamic compressive mechanical properties and a new constitutive model of 2D-C/SiC composites[J]. Materials Science and Engineering A, 2008, 489:120-126.
PDF(342 KB)

11

Accesses

0

Citation

Detail

段落导航
相关文章

/