Measurement of High-temperature Specific Heat Capacity of SiC Ceramics by Drop Calorimetry Method

WANG Xuerong;SUN Yan;WANG Qianqian;YAO Kai;MENG Xiangyan;ZHOU Yanping;LIU Yunchuan;MA Yandong

Acta Armamentarii ›› 2022, Vol. 43 ›› Issue (1) : 169-174. DOI: 10.3969/j.issn.1000-1093.2022.01.018
Paper

Measurement of High-temperature Specific Heat Capacity of SiC Ceramics by Drop Calorimetry Method

  • WANG Xuerong, SUN Yan, WANG Qianqian, YAO Kai, MENG Xiangyan, ZHOU Yanping, LIU Yunchuan, MA Yandong
Author information +
History +

Abstract

Specific heat capacity is an important physical parameter of SiC ceramics, which is directly related to its thermal conductivity and thermal diffusivity. It is an important basis for evaluating its thermal properties. Due to the wide application temperature range of SiC ceramics, which can be up to more than 1 000 ℃, it is necessary to study its specific heat capacity in a wide temperature range. To solve this problem,a drop calorimetry method was used to study the specific heat capacity of SiC ceramics in the range from 400 ℃ to 1 000 ℃. The high-temperature specific heat capacity tester for measuring solid materials was calibrated by using sapphire standard reference material. The results show that the error of specific heat capacity of sapphire standard reference material is less than 2%,which ensures the accuracy of the test equipment. The specific heat capacity of SiC sample increases with the temperature increasing. The measured results are basically consistent with the reference values provided in Refs.2122, and the relative deviation is in the range from 1.8% to 2.9%. It shows that the drop calorimetry method has high accuracy in determining the specific heat capacity of SiC material at high temperature,and it is a feasible method to determine the specific heat capacity of SiC material at high temperature in addition to the mixing method.

Key words

SiCceramic / dropcalorimetry / high-temperaturespecificheatcapacity / sapphire

Cite this article

Download Citations
WANG Xuerong, SUN Yan, WANG Qianqian, YAO Kai, MENG Xiangyan, ZHOU Yanping, LIU Yunchuan, MA Yandong. Measurement of High-temperature Specific Heat Capacity of SiC Ceramics by Drop Calorimetry Method. Acta Armamentarii. 2022, 43(1): 169-174 https://doi.org/10.3969/j.issn.1000-1093.2022.01.018

References


[1]李辰冉,谢志鹏,康国兴,等. 国内外碳化硅陶瓷材料研究与应用进展[J]. 硅酸盐通报,2020,39(5):1353-1370.
LI C R,XIE Z P,KANG G X,et al. Research and application progress of SiC ceramics: a review[J]. Bulletin of the Chinese Ceramic Society,2020,39(5):1353-1370. (in Chinese)
[2]李其松. 高热导率SiC陶瓷材料制备及应用研究[D]. 济南:山东大学,2016:1-5.
LI Q S. Preparation and application research of high thermal conductivity SiC Ceramics[D]. Jinan:Shandong University,2016:1-5.(in Chinese)
[3]李缨,黄凤萍,梁振海. 碳化硅陶瓷的性能与应用[J]. 陶瓷,2007(5):36-41.
LI Y,HUANG F P,LIANG Z H. Properties and applications of silicon carbide ceramics[J]. Ceramics,2007(5):36-41. (in Chinese)
[4]王灿,李佳,王海峰,等. 比热容测量技术的研究进展[J]. 计量技术,2016(6):7-11.
WANG C,LI J,WANG H F,et al. Research progress of specific heat capacity measurement technology[J]. Measurement Technique,2016(6):7-11. (in Chinese)
[5]魏莹,倪敏. DIS探究混合法测量固体比热容实验[J]. 物理通报,2019,39(2):90-92,95.
WEI Y,NI M. Exploration on the hybrid method for measuring the specific heat capacity of a solid by DIS[J]. Physics Bulletin,2019,39(2):90-92,95. (in Chinese)
[6]中国航天工业总公司. 固体材料60~2 773 K比热容测试方法:GJB 330A—2000[S]. 北京:中国标准出版社,2000.
China Aerospace Industry Corporation. Test method for specific heat capacity of solids in the temperature range from 60 to 2 773 K:GJB 330A—2000[S]. Beijing:China Standard Press,2000. (in Chinese)
[7]GORALSKI P,TKACZYK M,CHORAZEWSKI M. Heat capacities of α, ω-dichloroalkanes at temperatures form 284.15K to 353.15K and a group additivity analysis[J]. Journal of Chemical and Engineering Data,2003,48(3):192-496.
[8]任晓宁,赵凤起,肖立柏,等. 微纳米RDX炸药的连续比热容、热力学性质和热分解动力学[J]. 火炸药学报,2019,42(3):257-261.
REN X N,ZHAO F Q,XIAO L B,et al. Investigation on continuous specific heat capacities,thermodynamic properties and thermal decomposition kinetics of micro-sized and nano-sized RDX[J]. Chinese Journal of Explosives & Propellants,2019,42(3):257-261. (in Chinese)
[9]胡哲,江劲勇,路桂娥,等. 改黑碳推进剂比热容和热导率与温度之间的关系[J]. 火炸药学报,2015,38(6):95-98.
HU Z,JIANG J Y,LU G E,et al. Temperature dependence of specific heat capacity and thermal conductivity of GHT propellant[J]. Chinese Journal of Explosives & Propellants,2015,38(6):95-98. (in Chinese)
[10]陈珣,傅培舫,周怀春. 煤焦比热容的模型与DSC实验研究[J]. 工程热物理学报,2010,31(1):169-172.
CHEN X,FU P F,ZHOU H C. Experimental study of spccific heat models of coal-chars by applying DSC[J]. Journal of Engineering Thermophysics,2010,31(1):169-172. (in Chinese)
[11]耿巍,任海生,钱振东. 路面材料比热容试验优化分析[J]. 东南大学学报(自然科学版),2020,50(5):853-857.
GENG W,REN H S,QIAN Z D. Optimization analysis of specific heat capacity tests on pavement materials[J]. Journal of Southeast University(Natural Science Edition),2020,50(5) :853-857. (in Chinese)
[12]于伟东,王慧明,杨晓成,等. 褐煤比热容及热扩散系数随温度衍化规律实验研究[J]. 煤炭工程,2020,52(11):149-153.
YU W D,WANG H M,YANG X C,et al. Evolution characteristics of heat capacity and diffusivity of lignite as temperature varies[J]. Coal Engineering,2020,52(11):149-153. (in Chinese)
[13]孟祥艳,刘运传,周燕萍,等. 微热量热法测定纤维及树脂基复合材料的比热容[J]. 兵工学报,2015,36(10):1962-1966.
MENG X Y,LIU Y C,ZHOU Y P,et al. Determination of specific heat capacity of fiber and resin matrix composites by micro-calorimeter[J]. Acta Armamentarll,2015,36(10):1962-1966. (in Chinese)
[14]庞维强,樊学忠,刘庆,等. 聚5-乙烯基四唑的热行为、比热容和绝热至爆时间研究[J]. 含能材料,2010,18(6):694-698.
PANG W Q,FAN X Z,LIU Q,et al. Thermal behavior,specific heat capacity and adiabatic time to-explosion of poly 5-vinyltetrazole[J]. Chinese Journal of Energetic Material,2010,18(6):694-698. (in Chinese)
[15]徐抗震,赵凤起,杨冉,等. GNTO的热分解动力学和比热容及绝热至爆时间研究[J]. 固体火箭技术,2009,32(1):74-78.
XU K Z,ZHAO F Q,YANG R,et al. Non-isothermal decomposition kinetics,specific heat capacity and adiabatic time-to-explosion of GNTO[J]. Journal of Solid Rocket Technology,2009,32(1): 74-78. (in Chinese)
[16]SORAI M,KAJI K,KANEKO Y. An automated adiabatic calorimeter for the temperature range 13 K to 530 K the heat capacities of benzoic acid form 13 K to 530 K and of synthetic sapphire form 60 K to 505 K[J]. The Journal of Chmical Thermodynamics,1992,24(2):167-180.
[17]张义邴,李铭,朱红妹,等. 绝热法测量金属材料的比热[J]. 物理实验,2013,33(3):1-3,10.
ZHANG Y B,LI M,ZHU H M,et al. Measuring the specific heat of metals using adiabatic method[J]. Physics Experimentation,2013,33(3):1-3,10. (in Chinese)
[18]杨春光,徐鹤,徐烈,等. 硬质聚氨酯泡沫低温比热容的试验[J]. 江苏大学学报(自然科学版),2014,35(2):229-232,248.
YANG C G,XU H,XU L,et al. Experiment of specific heat capacity of rigid polyurethane foam at low temperature[J]. Journal of Jiangsu University(Natural Science Edition),2014,35(2): 229-232,248. (in Chinese)
[19]刘辉明,徐冬,龚领会. 固体材料低温比热测量技术综述[J]. 低温技术,2010,38(5):6-10.
LIU H M,XU D,GONG L H. A review of the measurements of the low temperature specific heat of solid materials[J]. Cryogenics,2010,38(5):6-10. (in Chinese)
[20]吴青余,张恒远,李俊伟. 校准量热法测量锂电池比热容和生热率[J]. 汽车工程,2020,42(1):59-65.
WU Q Y,ZHANG H Y,LI J W. Calibriated calorimetry for measuring the specific heat capacity and heat generation rate of lithiumion batlery[J]. Antomotive Engineering,2020,42(1):59- 65. (in Chinese)
[21]徐辉,邓建兵,沈江立. 固体材料比热容随温度变化规律的研究[J]. 宇航材料工艺,2011,41(5):74-77.
XU H,DENG J B,SHEN J L. Temperature dependence of specific heat capacity of solid materials[J]. Aerospace Materials and Technology,2011,41(5):74-77. (in Chinese)
[22]BARIN Y. 纯物质热化学数据手册[M]. 程乃良,牛四通,徐桂英,等,译.北京:科学出版社,2003:1063.
BARIN Y. Thermochemical data of pure substance[M]. CHENG N L,NIU S T,XU G Y,et al,translated. Beijing:Science Press,2003:1063. (in Chinese)


187

Accesses

0

Citation

Detail

Sections
Recommended

/