Numerical Simulation on Size Effect of Hydroxyl Terminated Polyether Propellant Engine during Slow Cook-off

ZHANG Haijun;NIE Jianxin;WANG Ling;WANG Dong;GUO Xueyong;YAN Shi

Acta Armamentarii ›› 2021, Vol. 42 ›› Issue (9) : 1858-1866. DOI: 10.3969/j.issn.1000-1093.2021.09.006
Paper

Numerical Simulation on Size Effect of Hydroxyl Terminated Polyether Propellant Engine during Slow Cook-off

  • ZHANG Haijun1, NIE Jianxin1, WANG Ling2, WANG Dong2,GUO Xueyong1, YAN Shi1
Author information +
History +

Abstract

The response processes of hydroxyl terminated polyether (HTPE) propellant engines with different sizes and length-to-diameter ratios were simulated to analyze the effect of structure size on their slow cook-off response characteristics. The temperature distribution, reaction temperature, reaction time and reaction location of propellant were studied. A calculation method based on image processing is established to calculate the temperature distribution of propellant before reaction of motor under slow cook-off. The temperature distribution is used as a parameter to evaluate the response intensity of slow cook-off. The results show that the engine diameter has a great influence on the reaction time and temperature of slow cook off, while the engine length has little effect on them. Both of them have great influence on the reaction position. With the increase in the size and length-to-diameter ratio, the reaction position moves to the edge of the charge. When the size is large enough, the distance between the reaction position and the shell edge remains stable. The mass ratio of high temperature propellant changes with the change of length-to-diameter ratio. When the charge diameter is 150-160 mm, the proportion of high temperature propellant before reaction is the smallest with charges of 5.5 kg, 18.0 kg and 44.0 kg, respectively.

Key words

hydroxylterminatedpolyetherpropellant / slowcook-off / sizeeffect / temperaturedistribution

Cite this article

Download Citations
ZHANG Haijun, NIE Jianxin, WANG Ling, WANG Dong,GUO Xueyong, YAN Shi. Numerical Simulation on Size Effect of Hydroxyl Terminated Polyether Propellant Engine during Slow Cook-off. Acta Armamentarii. 2021, 42(9): 1858-1866 https://doi.org/10.3969/j.issn.1000-1093.2021.09.006

References


[1]董海山.钝感弹药的由来及重要意义[J].含能材材,2006,14(5): 321-322.
DONG H S.Theorigin and importance of the insensitive munitions[J].Chinese Journal of Energetic Materials, 2006,14(5):321-322.(in Chinese)
[2]蒋超,闻泉,王雨时,等.不敏感弹药烤燃试验技术综述[J].探测与控制学报, 2019, 41(2):1-9.
JIANG C,WEN Q,WANG Y S,et al.An overview on cook-off test technology for insensitive munitions[J].Journal of Detection & Control,2019,41(2):1-9.(in Chinese)
[3]李军,焦清介,庞爱民,等.固体发动机低易损性评估研究进展[J].固体火箭技术,2019,42(1):1-6,15.
LI J,JIAO Q J,PANG A M,et al.Recent progress on evaluation of low-vulnerability properties for solid rocket motor[J].Journal of Solid Rocket Technology,2019,42(1):1-6,15.(in Chinese)
[4]刘静,余永刚.不同升温速率下模块装药慢速烤燃特性的数值模拟[J].兵工学报,2019,40(5):990-995.
LIU J,YU Y G.Simulation of slow cook-off for modular charges at different heating rates[J].Acta Armamentarii, 2019,40(5):990-995. (in Chinese)
[5]赵孝彬,李军,程立国,等.固体推进剂慢速烤燃特性的影响因素研究[J].含能材料,2011,19(6):669-672.
ZHAO X B, LI J,CHENG L G,et al.Influence factors of slow cook-off characteristic for solid propellant[J].Chinese Journal of Energetic Materials,2011,19(6):669-672.(in Chinese)
[6]YEQ,YU Y G,LI W F.Study on cook-off behavior of HTPE propellant in solid rocket motor[J].Applied Thermal Engineering,2019,167:114798.
[7]戴湘晖,段建,沈子楷,等.侵彻弹体慢速烤燃响应特性实验研究[J].兵工学报,2020,41(2):291-297.
DAI X H,DUAN J,SHEN Z K,et al.Experiment of slow cook-off response characteristics of penetrator.[J].Acta Armamentarii,2020,41(2):291-297.(in Chinese)
[8]DENG H,SHEN F,LIANG Z F,et al.Numerical simulation and experimental study on slow cook-off response characteristics of compositeB[J].Journal of Physics:Conference Series,2020,1507(2): 022014.
[9]李文凤.AP/HTPB底排药烤燃特性的实验研究和数值模拟[D].南京:南京理工大学,2018.
LI W F.Experimental research and numerical analysis on the cook-off characteristics of AP/HTPB base bleed propellant[D].Nanjing:Nanjing University of Science and Technology,2018.(in Chinese)
[10]赵亮,智小琦,于永利,等.不同升温速率下DNAN熔铸炸药烤燃尺寸效应研究[J].弹箭与制导学报,2019,39(5):1-4.
ZHAO L,ZHI X Q,YU Y L,et al.Study on dimension effect on the response of DNAN melt explosive at different heating rate[J].Journal of Projectiles, Rockets, Missiles and Guidance,2019,39(5):1-4.(in Chinese)
[11]宋柳芳,李尚文,王拯,等.HTPE推进剂烤燃试验尺寸效应及数值模拟[J].含能材料,2019,27(9):735-742.
SONG L F,LI S W,WANG Z,et al.Size effect and numerical simulation of cook-off tests for HTPE propellant[J].Chinese Journal of Energetic Materials,2019,27(9):735-742.(in Chinese)
[12]陈中娥,唐承志,赵孝彬.HTPB/AP推进剂的慢速烤燃特征[J].含能材料,2006,14(2):155-157.
CHEN Z E,TANG C Z,ZHAO X B.Characteristics of HTPB/AP propellants in slow cook-off[J].Chinese Journal of Energetic Materials,2006,14(2):155-157.(in Chinese)
[13]陈朗,马欣,黄毅民,等.炸药多点测温烤燃实验和数值模拟[J].兵工学报,2011,32(10):1230-1236.
CHEN L,MA X,HUANG Y M,et al.Multi-point temperature measuring cook-off test and numerical simulation of explosive[J].Acta Armamentarii, 2011,32(10):1230-1236.(in Chinese)
[14]李军强,樊学忠,唐秋凡,等.HTPE推进剂慢速烤燃及其热分解特性[J].固体火箭技术,2019,42(5):597-603.
LI J Q,FAN X Z,TANG Q F,et al.Slow cook-off behavior and thermal decomposition characteristics of HTPE propellants[J].Journal of Solid Rocket Technology,2019,42(5):597-603.(in Chinese)
[15]杨筱,智小琦,杨宝良,等.装药结构对固体火箭发动机烤燃温度分布的影响[J].高压物理学报,2017,31(4):433-442.
YANG X,ZHI X Q,YANG B L,et al.Influence of charge structure on the cook-off temperature distribution of solid rocket motor[J].Chinese Journal of High Pressure Physics,2017,31(4):433-442. (in Chinese)
[16]YEQ,YU Y G.Numerical analysis of cook-off behavior of cluster tubular double-based propellant[J].Applied Thermal Enginee- ring, 2020,181: 115972.
[17]陈中娥,唐承志,赵孝彬.固体推进剂的慢速烤燃行为与热分解特性的关系研究[J].含能材料,2005,13(6):393-396,353.
CHEN Z E,TANG C Z,ZHAO X B.Relationship between slow cook-off behavior and thermal decomposition characteristics of solidpropellant[J].Chinese Journal of Energetic Materials,2005,13(6): 393-396,353.(in Chinese)
[18]TOLMACHOFF E D,ESSEL J T.Evidence and modeling of
heterogeneousreactions of low temperature ammonium perchlorate decomposition[J].Combustion and Flame,2019,200:316-324.




第42卷第9期2021年9月
兵工学报ACTA ARMAMENTARII
Vol.42No.9Sep.2021

216

Accesses

0

Citation

Detail

Sections
Recommended

/